Service Manual

AIR CONDITIONER

CS-W18BD3P CU-W18BBP5
CS-W24BD3P CU-W28BBP5
CS-W28BD3P CU-W28BBP8
CS-W28BD3P CU-W28BBP8
CS-W34BD3P CU-W34BBP8
CS-W43BD3P CU-W43BBP8
CS-W18BD3P CU-V18BBP5
CS-W24BD3P CU-V24BBP5
CS-W24BD3P CU-V24BBP8
CS-W28BD3P CU-V28BBP8
CS-W28BD3P CU-V28BBP8
CS-W34BD3P CU-V34BBP8
CS-W34BD3P CU-V34BBP8

♠ WARNING

This service information is designed for experienced repair technicians only and is not designed for use by the general public. It does not contain warnings or cautions to advise non-technical individuals of potential dangers in attempting to service a product. Products powered by electricity should be serviced or repaired only by experienced professional technicians. Any attempt to service or repair the product or products dealt with in this service information by anyone else could result in serious injury or death.

A PRECAUTION OF LOW TEMPERATURE

In order to avoid frostbite, be assured of no refrigerant leakage during the installation or repairing of refrigeration circuit.

CONTENTS

Page	Page
1 SERVICE INFORMATION3	15 CAPACITY AND POWER CONSUMPTION62
2 FEATURES4	16 DISCHARGE AND SUCTION PRESSURE 66
3 SPECIFICATION (HEAT PUMP TYPE)10	17 SOUND DATA 67
4 SPECIFICATION (COOLING ONLY TYPE)16	18 TWIN OPERATION 75
5 TECHNICAL DRAWING23	19 WIRING MISTAKE PREVENTION80
6 CIRCUIT DIAGRAM31	20 TEST OPERATION AND SELF DIAGNOSIS81
7 OPERATING INSTRUCTION46	21 SETTING OF SAVE ENERGY AND THERMISTOR SWITCH 85
8 REFRIGERATION CYCLE48	22 GROUP CONTROL86
9 OPERATION RANGE51	23 TROUBLE SHOOTING87
10 PIPE LENGTH 52	24 EMERGENCY OPERATION93
11 OPERATING CHARACTERISTIC 54	25 CONTROL94
12 FAN PERFORMANCE 55	26 INSTALLATION (INDOOR UNIT)104
13 SAFETY DEVICE59	27 INSTALLATION (OUTDOOR UNIT)116
14 COMPONENT SPECIFICATION 60	

Panasonic

© 2002 Matsushita Air-Conditioning Corp. Sdn. Bhd. (183914D). All rights reserved. Unauthorized copying and distribution is a violation of law.

28 REPLACEMENT PARTS ------128

1 SERVICE INFORMATION

Notice of Address setting for NEW Cassette / NEW Outdoor Unit.

The new Ceiling / New Outdoor models are possible to have address setting for twin / triple control or group control by automatic when main power supply is switched on.

(Manual address setting is also possible by using Dip switch on Indoor unit P.C. board.) However, this address setting is only possible when made proper wiring connection and also Indoor unit should be original virgin unit.

1.1. Example of trouble at test operation

If found out as following phenomenon at test operation on site, it may have possibility of wrong address setting. Therefore, please ensure of the address setting.

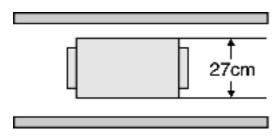
- 1. LCD display of wired remote control had not illuminate although the main power supply switch is 'on'.
- 2. LCD display had indicated as normal illumination when power supply switch is 'on', however outdoor unit cannot be operated. (But, it is necessary to take 3 to 5 minutes for outdoor unit to start from the timing of remote control ON/OFF switch is 'on'.)
- 3. P.C. board had memorized wrong setting information.
 - a. If main power supply is switched 'on' with the wrong connection.
 - b. When changing the connection or combination of units due to re-installation etc.
 - When changing the system from twin to triple (triple to twin).
 - When changing the system from group control to normal one to one system.
 - When making the replacement of units as master and slave etc.

1.2. Caution of test operation

Do not touch the remote control switch and do not change any wirings for one minute when the main power supply switch is 'on'. (Because the unit is having automatic address setting during the first one minute.)

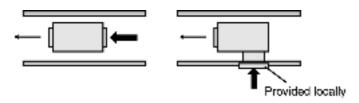
1.3. Caution during automatic address setting

When main power supply switch is 'on', the P.C. board will automatically memorized the connecting system.

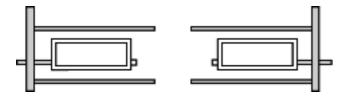

Consequently, when initial power supply is 'on', there will not be interchangeability of units even of the same type and same capacity unit. Therefore unable to connect the unit to another system.

2 FEATURES

2.1. Variety of excellent features

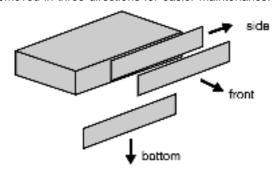

2.1.1. Compact design, height 27 cm

• The height has been reduced to 27 cm (for 2.5HP to 5.0HP), the equipment can be installed in limited spaces.



2.1.2. Versatile installation

 The indoor unit is designed in order that air will also enter from below, for easier installation under different conditions.



 The equipment has two drain outlets on the right and left side for adoption to the installation conditions in the building.

2.1.3. Easy maintenance

 Equipped with a filter as standard. The filter can be removed in three directions for easier maintenance.

2.1.4. Static pressure selection

 The static pressure is selectable; 5mmAq or 7mmAq. The static pressure can be selected according to the condition of the duct.

2.1.5. Quiet operation

 The sound level is as low as 39db (A) for 2.5 HP. The models is ideal for installation in offices, shop and houses where quiet operation is important.

2.1.6. Auto fan mode operation (indoor unit)

Auto fan mode is added to existing modes Hi, Me and Lo.
 It automatically adjusts the fan speed according to the indoor temperature.

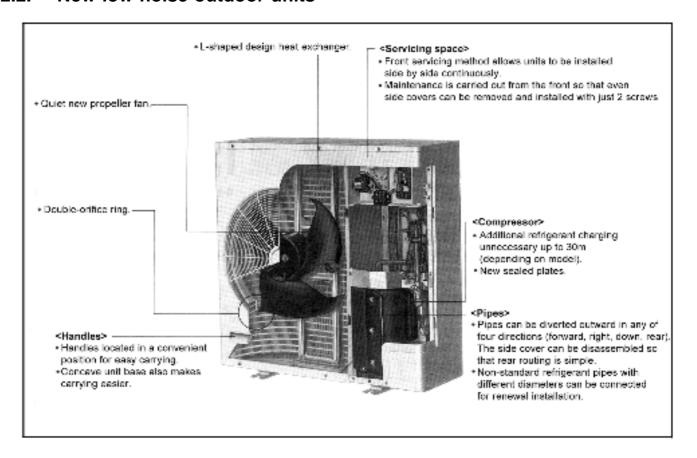
2.1.7. Dry mode function

• Dry mode can make a comfortable indoor environment during wet season.

2.1.8. Automatic changeover function (heat pump models)

• The unit automatically switches between cooling and heating in accordance with operating load in order to maintain a confortable indoor temperature.

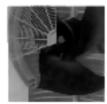
2.1.9. Common design for Indoor unit and Remote Control


 The indoor unit and the wired remote control are design as a common specification between Cooling only and Heat Pump models.

2.1.10. Wired Remote Control

- The new design includes an easily-visible red pilot lamp.
 The power can be turned on and off at a single touch, without opening the cover.
- A built-in thermistor, allowing indoor temperature detection in accordance with indoor conditions by switching with main unit thermistor.
- Twin non-polar wires make installation work easy (10 m cable supplied as accessories).

2.2. New low-noise outdoor units

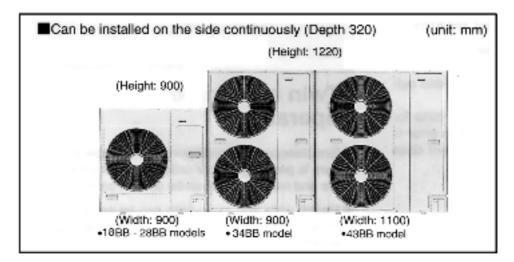


[Product features]

2.2.1. Low-noise design improves in surrounding areas

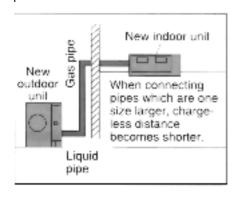
 The noise-suppressing winglet fan is a result of new research into vane design theory. The unique curved shape suppresses the generation of vortexes, thus reduces air flow noise.

- The adoption of double-orifice rings reduces air passage resistance.
- Strengthening of the noise insulation materials in the compressor and the sealing-in of mechanical noise allows vibration noise to be greatly enclosed and suppressed.
- 4. The heat exchanger has an L-shaped design to allow air to flow more smoothly.
- 5. Noise is automatically reduced further during night time operation with lower outdoor air temperatures.


2.2.2. Automatic restart function

When the electric power resumes after a power failure, the unit will automatically restarts the operation in the pre-failure mode.

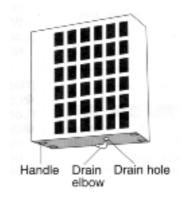
2.2.3. Low ambient cooling operation


Cooling operation is possible at outdoor temperature of -5°C.

2.3. Greatly improved workability increases system renewal capability

2.3.1. Pipes that are one size larger can also be connected for renewal

 If renewing the system, existing refrigerant pipes can be utilized so that only the indoor units and outdoor units need to be replaced.


 For example, liquid and gas pipes from 10 years ago can be connected to current pipes with the same size for one size larger. Effective utilization of materials reduces working time and trouble. (Adaptor sockets are not supplied.)

2.3.2. Additional refrigerant charging unnecessary for 30 m

 All models do not require any additional charging of refrigerant for 30 m of pipe length. This makes installation much easier.

2.3.3. Drain water dripping-prevention structure

 The base of the outdoor unit is provided with a single drain hole in order to prevent drain water from leaking out of the unit. Body connecting a drain elbow and a discharge pipe, water leakages can be prevented even when the unit is installed against a wall.

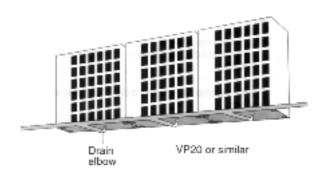
2.3.4. Space saving design allows units to be installed side by side continuously

 Servicing after installation can be carried out by removing the front covers.

2.3.5. Easy test operation

 Test operation can be carried out for both indoor and outdoor units.

2.3.6. Long pipe design

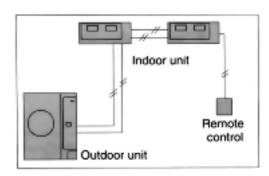

Max piping length: 50 (m)	18BB~50BB
Height difference/equivalent pipe length	30/50

2.3.7. Internal pipe connection

- Pipes are connected inside the units (inside the side covers), making the final appearance more attractive.
- Pipes can be diverted outward in any of four directions (forward, right, down, rear).
- Small liquid pipe diameters of 9.52mm for 43BB model, making installation work much easier.

2.3.8. Centralized draining method

 Even when multiple outdoor units are installed to a wall, the drain outlets can be concentrated into a single drain pipe.
 This makes installation easier and also improve appearance.

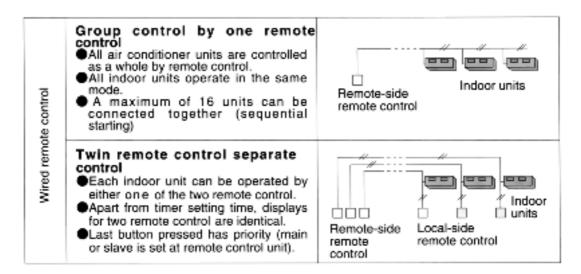

2.4. A brand-new control method using the latest in technology

2.4.1. Power supply wiring is also easier

Power supply wiring and other wiring tasks can be carried out more easily.

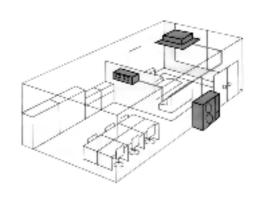
- Twin non-polar wires used to connect indoor and outdoor units.
- Adoption of connection error prevention circuits for drives

wires and signal wires. If a connection error is made, the relay does not operate and current does not flow to the circuit boards.

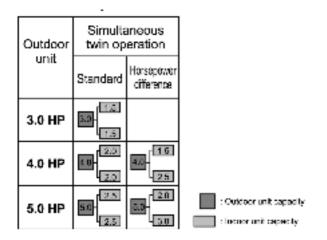

2.4.2. Separate indoor/outdoor unit power supplies

The power supply can be connected to (1) just the outdoor units, or (2) to both indoor and outdoor units.

2.4.3. Automatic setting initialization function (Remote control and Indoor unit)


In accordance with the indoor and outdoor units connected and the connection methods, conditions such as the configuration (twin or triple format) and remote-control functions such as cooling only or heat pump model are automatically detected and set instantly.

2.4.4. Group control equipment



2.4.5. Twin operation

- Simultaneous air conditioning of wide spaces and corners is possible. Indoor units of different horsepowers and models can even be used in combination.
- Master unit and slave-units can be set automatically in twin systems. No address setting is necessary.
- Multiple indoor units can be operated simultaneously with a single remote control. Note that individual operation is not possible.

■ Twin combination table

2.5. New refrigerant Series [R407C] pipe installation

2.5.1. Procedure

 The new refrigerant (R407C) has a different composition to the previously-used refrigerant (R22), so some contents and method of pipe installation and charging work are different from before. Care should be taken when carrying out this work.

2.5.2. Installation and precautions

2.5.2.1. Before installation

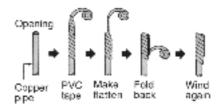
- 1. Determine the installation division.
- 2. Check the refrigerant to be used.
 - Check that the refrigerant is R407C.
 - Check that the gauge pressure is at a maximum of 3.3 MPa
- 3. Make a drawing of the Installation.

2.5.2.2. Installation

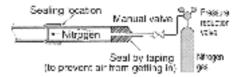
- 1. Install the sleeve and the insert.
- 2. Install the indoor unit.
- 3. Install the refrigerant piping.
 - Pipe materials
 - Refrigerant pipes which were previously used to carry R22 must not be re-used. If replacing the indoor and outdoor units, be sure to replace all refrigerant pipes also.
 - Check the pipe thickness.
 - Clean the inside of the pipes.
 - When storing pipes, seal both ends of the pipes and store them indoors to prevent water, dust and other foreign particles from getting inside.
 - Take care not to let any foreign particles (oxide scales, water or dirt) get inside the refrigerant lines (same as for R22).

■ Refrigerant pipe storing

Location	Installation period	Storing method
Outdoors	1 month or more	Pinching
	Less than 1 month	Pinching or taping
Indoors	Any	


• Pinching method

Close off the ends of the pipes with pliers or similar tool and seal the opening by brazing.



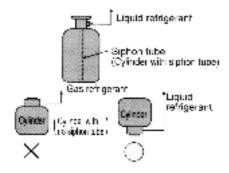
• Taping method

Wind PVC tape around the ends of the pipes to seal the openings.

- Do not work for refrigerant piping on outdoor on rainy days.
- Seal by brazing.
- Be sure to use only a non-oxidizing brazing material.
 (Use nitrogen. Anti-oxidants cannot be used.)

- When brazing pipes together, or when brazing copper pipes and copper joints, use a brazing material (Bcup-3) which does not require flux.
- Flare processing and ester oil.
- Sealing can be improved by applying ester oil or mineral oil (the minimum amount necessary) to flares and flange connections.
- Due to the high hygroscopic tendency for ester oil, do not mix or use any other impurities. (This can cause deterioration of the compressor oil and problems with the compressor.)
- After preparing the refrigerant pipes, close both ends of the pipes by brazing if not immediately connecting them.
- A torque wrench must be used.
- 4. Install the drain pipe.
- 5. Install the ducts.
- 6. Insulate against heat.
- 7. Carry out the electrical work.
 - Connecting cables and power cables.
- 8. Make all necessary settings.
- 9. Prepare the outdoor unit foundation.
- 10. Install the outdoor unit.

11. Air-tightness test.


For the final check, there should be no pressure drop when 3.3 MPa is applied for 24 hours.

12. Vacuum drying.

Vacuum draw time	60 min. or more

- * Vacuum pump capacity 60 l/min. or higher
 - Drawing the vacuum will remove any moisture.
 - The pressure after vacuum drawing should be 755 mmHg or less.
 - Use a special vacuum pump (with backflow-prevention mechanism).
 - Gas must never be used for air purging.
- 13. Additional refrigerant charging.
 - Check that refrigerant volume is correct.
 - Be sure to charge refrigerant in liquid state.
 - · Always charge in liquid state.

When the refrigerant is charged from the cylinder, the composition may change greatly (compounds which do not easily evaporate may remain inside the cylinder), so the refrigerant must always be charged in a liquid state.

(It is recommended that a manifold with sight glass be used.)

■ Boiling point at normal atmospheric pressure (reference)

Refrigerant	HFC32	HFC125	HFC134a
Boiling point	-52°C	-49°C	-26°C

- Use a special gauge manifold and charging hose.
- If refrigerant leaks occur, replace all of the refrigerant (same as for R22).
- Note that a R22 leak detector cannot be use to detect leaks.
- Refer to the Installation Instructions included for the correct charging amount.
- Make a note of additional refrigerant charging amounts in the record table.
- 14. Test operation and adjustment.
- 15. Organize documentation before handover.
- 16. Handover and explanation of operation.
 - · Ventilation of closed rooms

R407C is a non-flammable refrigerant with low toxicity, but in the gas state its specific gravity is heavier than that of air, and so if leaks occur in a closed room, suffocation may occur. Toxic gases may also be generated if it comes into direct contact with flames, so adequate ventilation must be provided.

Name	Application	Class	Remarks		
Pipe cutter	Outring refrigerant pipes	0			
Flare tool	Figing of relingerant piges	0			
Refrigerantip pe expander (tubo expander)	Enlarging pipes during connection	0	 Clean of any retrigerator of it the tool has been used with the previous retrigerant 		
Torque wrench	Tightening flare nuts	0			
Pipe bender	Bending retrigerant pipes	0			
Compressor of	Applying to flares	٥	 Use care when storing and handling due to high hyproscopicity 		
Nitrogen gas	Preventing exidation inside refrigerent pipes when welding pipes.	0			
Welder	Brazing refrigerant pipe opening	ा			
Gauge manifold	Checking vacuum drawing, reingerant charging and operating pressure				 Check pressure-resistance specifications. If used previously with R22 sin conditioners, compressor oil from that air conditioner may still be present.
Charging hose			 Use a tool with a sight glass to make liquid refrigerant checking easier. 		
Vacuum pump	Drawing vacuum and drying	0	 Backflow-prevention mechanism recessary. Changed to screw-on specifications (adaptor required) 		
Charging cylinder	Charging refrigerant	×	 Cannot be used for normal usage method due to drange in rehiperant composition. 		
Floatronic scale for refrigerant charging			Pressure-resistance and connection opening specifications must be checked.		
Electronic gas leak detector	Checking refrigerant leaks	0	 Previous electronio-type gas leak detectors can not detect. 		
Patrigerant collector	Collection refrigerant	0	 Special equipment required 		

^{\$\}perp \text{Special tool for P407C use required \quad \text{\text{Cannot be used for P407C and P22} \quad \text{\text{X:Cannot be used}}

[&]quot;It is recommended that materials and icols to be used only for the RACAC substitute refrigerant be aped ally coloured for discrimination. (Example: Paint a marking by turning the brown colour of RACAC cylinder, or attach discrimination tape.)

3 SPECIFICATION (HEAT PUMP TYPE)

3.1. CS-W18BD3P / CU-W18BBP5

	ITEM / MODEL			Indoor Unit	Outdoor unit	
		Main Body	CS-W18BD3P	CU-W18BBP5		
Cooling Capacity			kW	5.00		
			(BTU/h)	(17,100)		
Heating Capac	ity		kW	5.60		
			(BTU/h)	(19,0	000)	
Refrigerant Cha			m	30)	
Standard Air Vo	olume for High Sp	eed	m³/min	Hi 17		
			cfm	Hi 600		
External Static	Pressure		mmAq	Hi 5	-	
			Pa	Hi 49		
Air Inlet				Backward Suction	Back sided Suction	
Air Outlet				Front blow-out	Front blow-out	
Outside Dimen	sion (H x W x D)		mm	290 x (780 + 100) x 650	900 x 900 x 320	
Net Weight			kg (lbs)	34 (75)	73 (161)	
Piping	Refrigerant	Gas	mm (inch)	O.D Ø 12.7 (1/2) Flared Type		
Connection	Liquid		mm (inch)	O.D Ø 6.35 (1/4) Flared Type		
	Drain	•	mm	Female screw RC1 (PT1)	I.DØ 20 x 1	
Compressor	Type, Number			-	Hermetic-1 (Rotary), 1	
	Starting Metho	d		-	Direct on-line starting	
	Motor	Type		-	2-pole single phase induction motor	
		Rated Output	kW	-	1.3	
Fan	Type, Number	of Set		Sirocco fan	Prop. fan	
	Air Volume Co	ntrol		Three-Step and Auto mode	-	
				(Remote Control)		
	Motor	Type		4-pole single phase induction motor	6-pole single phase induction motor	
		Rated Output	kW	0.085	0.05	
Air-heat Exchai	nger	•		X-Louvre-fin type	X-Louvre-fin type	
Refrigerant Cor				Capillary tube	Capillary tube	
Refrigerant Oil			L	-	MEL56 (0.7)	
Refrigerant (Ch	narged)		kg (oz)	-	R407C 2.8 (99)	
Running	Control Switch			Wired Remote Control	-	
Adjustment	Room Temper	ature		Thermostat (Main Body)	-	
Safety Devices				Internal protector for compressor, Internal	ernal thermostat for F.M, Crankcase	
				heater, High pressure swi		
Noise Level			dB (A)	Hi 37 Lo 33	Cooling 50, Heating 50	
			Power level dB	Hi 52 Lo 48	Cooling 63, Heating 63	

^{1.} Cooling capacities are based on indoor temp. 27°C D.B. (80.6°F D.B.), 19.0°C W.B. (66.2°F W.B.) and outdoor air temp. 35°C D.B. (95°F D.B.), 24°C W.B. (75.2°F W.B.)

MODEL / ITEM			CS-W18BD3P/CU-W18BBP5				
				Condition by JIS B 8615			
Volts	V		220	230	240		
Phase			Single	Single	Single		
Input Power	kW	Cool	1.85	1.85	1.85		
	I	Heat	1.88	1.88	1.88		
Running Current	A	Cool	8.5	8.2	7.9		
		Heat	8.6	8.3	7.9		
Starting Current	A		38	40	42		
Power Factor	%	Cool	99	98	98		
		Heat	99	98	99		
*Power Factor means to	tal figure of c	ompresso	r, indoor fan motor and outdoo	r fan motor.			
Panasonic	Power	source	AC, 1~220V, 230V, 240V 50Hz				

^{2.} Heating capacities are based on indoor temp. 20°C D.B. (68.0°F D.B.) and outdoor air temp. 7°C D.B. (44.6°F D.B.), 6°C W.B. (42.8°F D.B.)

3.2. CS-W24BD3P / CU-W24BBP5

	ITEM / MODEL			Indoor Unit	Outdoor unit	
			Main Body	CS-W24BD3P	CU-W24BBP5	
Cooling Capacit	у		kW	6.30		
			(BTU/h)	(21,500)		
Heating Capacit	у		kW	7.10		
			(BTU/h)	(24,2	200)	
Refrigerant Cha	rge-less		m	30		
Standard Air Vo	lume for High Sp	eed	m³/min	Hi 20		
			cfm	Hi 706		
External Static F	Pressure		mmAq	Hi 5	-	
			Pa	Hi 49		
Air Inlet				Backward Suction	Back sided Suction	
Air Outlet				Front blow-out	Front blow-out	
Outside Dimens	ion (H x W x D)		mm	270 x (1000 + 100) x 650	900 x 900 x 320	
Net Weight			kg (lbs)	40 (88)	81 (179)	
Piping	Refrigerant	Gas	mm (inch)	O.D Ø 15.88 (5/8) Flared Type		
Connection	Connection		mm (inch)	O.D Ø 6.35 (1/4	4) Flared Type	
	Drain	•	mm	Female screw RC1 (PT1)	I.DØ 20 x 1	
Compressor	Type, Number	of Set		-	Hermetic-1 (Rotary), 1	
	Starting Metho	od		-	Direct on-line starting	
	Motor	Туре		-	2-pole single phase induction motor	
		Rated Output	kW	-	1.9	
Fan	Type, Number	of Set		Sirocco fan	Prop. fan	
	Air Volume Co	ontrol		Three-Step and Auto mode	-	
				(Remote Control)		
	Motor	Туре		4-pole single phase induction motor	6-pole single phase induction motor	
		Rated Output	kW	0.085	0.05	
Air-heat Exchan	ger	•		X-Louvre-fin type	X-Louvre-fin type	
Refrigerant Con	trol			Capillary tube	Capillary tube	
Refrigerant Oil (Charged)		L	-	MEL56 (1.3)	
Refrigerant (Cha	arged)		kg (oz)	-	R407C 2.8 (99)	
Running	Control Switch	1		Wired Remote Control	-	
Adjustment	Room Temper	ature		Thermostat (Main Body)	-	
Safety Devices				Internal protector for compressor, Internal thermostat for F.M, Crankcas heater, High pressure switch, Current Transformer		
Noise Level			dB (A)	Hi 39 Lo 33	Cooling 52, Heating 53	
			Power level dB	Hi 54 Lo 48	Cooling 65, Heating 66	

^{1.} Cooling capacities are based on indoor temp. 27°C D.B. (80.6°F D.B.), 19.0°C W.B. (66.2°F W.B.) and outdoor air temp. 35°C D.B. (95°F D.B.), 24°C W.B. (75.2°F W.B.)

MODEL / ITEM		CS-W24BD3P/CU-W24BBP5					
				Condition by JIS B 8615			
Volts	V		220	230	240		
Phase			Single	Single	Single		
Input Power	kW	Cool	2.56	2.56	2.56		
	ĺ	Heat	2.60	2.60	2.60		
Running Current	А	Cool	11.70	11.20	10.80		
		Heat	11.90	11.40	10.90		
Starting Current	А		64	66	68		
Power Factor	%	Cool	99	99	99		
		Heat	99	99	99		
*Power Factor means tot	tal figure of c	ompresso	r, indoor fan motor and outdoo	or fan motor.	•		
Panasonic	Power	source	AC, 1~220V, 230V, 240V 50Hz				

^{2.} Heating capacities are based on indoor temp. 20°C D.B. (68.0°F D.B.) and outdoor air temp. 7°C D.B. (44.6°F D.B.), 6°C W.B. (42.8°F D.B.)

3.3. CS-W28BD3P / CU-W28BBP5

	ITEM / MODEL			Indoor Unit	Outdoor unit	
			Main Body	CS-W28BD3P	CU-W28BBP5	
Cooling Capacit	ty		kW	7.10		
			(BTU/h)	(24,200)		
Heating Capaci	ty		kW	8.0	0	
			(BTU/h)	(27,3	300)	
Refrigerant Cha	arge-less		m	30)	
Standard Air Vo	olume for High Spe	ed	m³/min	Hi 25		
			cfm	Hi 883		
External Static	Pressure		mmAq	Hi 5	-	
			Pa	Hi 49		
Air Inlet				Backward Suction	Back sided Suction	
Air Outlet				Front blow-out	Front blow-out	
Outside Dimens	sion (H x W x D)		mm	270 x (1000 + 100) x 650	900 x 900 x 320	
Net Weight			kg (lbs)	40 (88)	82 (181)	
Piping	Refrigerant	Gas	mm (inch)	O.D Ø 15.88 (5/8) Flared Type		
Connection	Connection		mm (inch)	O.D Ø 9.52 (3/8		
	Drain		mm	Female screw RC1 (PT1)	I.DØ 20 x 1	
Compressor	Type, Number of	of Set		-	Hermetic-1 (Rotary), 1	
	Starting Method			-	Direct on-line starting	
	Motor	Type		-	2-pole single phase induction motor	
		Rated Output	kW	-	2.0	
Fan	Type, Number of			Sirocco fan	Prop. fan	
	Air Volume Con	trol		Three-Step and Auto mode	-	
				(Remote Control)		
	Motor	Туре		4-pole single phase induction motor	6-pole single phase induction motor	
		Rated Output	kW	0.115	0.05	
Air-heat Exchar				X-Louvre-fin type	X-Louvre-fin type	
Refrigerant Cor				Capillary tube	Capillary tube	
Refrigerant Oil			L	-	MEL56 (1.3)	
Refrigerant (Charged)			kg (oz)	-	R407C 3.3 (116)	
Running	Control Switch			Wired Remote Control	-	
Adjustment	Room Temperat	ture		Thermostat (Main Body)	-	
Safety Devices				Head thermostat for compressor, Internal thermostat for F.M, Crankcas heater, High pressure switch, Current Transformer		
Noise Level			dB (A)	Hi 40 Lo 34	Cooling 53, Heating 54	
			Power level dB	Hi 55 Lo 49	Cooling 66, Heating 67	

^{1.} Cooling capacities are based on indoor temp. 27°C D.B. (80.6°F D.B.), 19.0°C W.B. (66.2°F W.B.) and outdoor air temp. 35°C D.B. (95°F D.B.), 24°C W.B. (75.2°F W.B.)

MODEL / ITEM		CS-W28BD3P/CU-W28BBP5					
				Condition by JIS B 8615			
Volts	V	220	220	230	240		
Phase			Single	Single	Single		
Input Power	kW	Cool	2.86	2.86	2.86		
	İ	Heat	3.02	3.02	3.02		
Running Current	A	Cool	13.1	12.5	12.5		
		Heat	13.8	13.2	12.7		
Starting Current	A		68	70	72		
Power Factor	%	Cool	99	99	95		
		Heat	99	99	99		
*Power Factor means to	otal figure of c	ompresso	r, indoor fan motor and outdoo	r fan motor.	•		
Panasonic	Power	source	AC, 1~220V, 230V, 240V 50Hz				

^{2.} Heating capacities are based on indoor temp. 20°C D.B. (68.0°F D.B.) and outdoor air temp. 7°C D.B. (44.6°F D.B.), 6°C W.B. (42.8°F D.B.)

3.4. CS-W28BD3P / CU-W28BBP8

	ITEM / MODEL			Indoor Unit	Outdoor unit	
			Main Body	CS-W28BD3P	CU-W28BBP8	
Cooling Capacity	1		kW	7.1	0	
			(BTU/h)	(24,200)		
Heating Capacity	/		kW	8.0	0	
			(BTU/h)	(27,3	600)	
Refrigerant Char	ge-less		m	30)	
Standard Air Vol	ume for High Spe	eed	m³/min	Hi 35		
			cfm	Hi 1236		
External Static P	ressure		mmAq	Hi 5	-	
			Pa	Hi 49		
Air Inlet				Backward Suction	Back sided Suction	
Air Outlet				Front blow-out	Front blow-out	
Outside Dimensi	on (H x W x D)		mm	270 x (1000 + 100) x 650	1220 x 900 x 320	
Net Weight			kg (lbs)	40 (88)	82 (181)	
Piping	Refrigerant	Gas	mm (inch)	O.D Ø 19.05 (3/4) Flared Type		
Connection		Liquid	mm (inch)	O.D Ø 9.52 (3/8	B) Flared Type	
	Drain		mm	Female screw RC1 (PT1)	I.DØ 20 x 1	
Compressor	Type, Number	of Set		-	Hermetic-1 (Rotary), 1	
	Starting Metho	d		-	Direct on-line starting	
	Motor	Туре		·	2-pole 3-phase induction motor	
		Rated Output	kW	ŀ	2.0	
Fan	Type, Number	of Set		Sirocco fan	Prop. fan	
	Air Volume Co	ntrol		Three-Step and Auto mode	-	
				(Remote Control)		
	Motor	Туре		4-pole single phase induction motor	6-pole single phase induction motor	
		Rated Output	kW	0.115	0.05	
Air-heat Exchanç				X-Louvre-fin type	X-Louvre-fin type	
Refrigerant Cont				Capillary tube	Capillary tube	
Refrigerant Oil (0			L	-	MEL56 (1.3)	
Refrigerant (Cha			kg (oz)	-	R407C 3.3 (116)	
Running	Control Switch			Wired Remote Control	-	
Adjustment	Room Temper	ature		Thermostat (Main Body)	-	
Safety Devices				Internal protector for compressor, Internal protector for compressor, Internal protector, High pressure swit		
Noise Level			dB (A)	Hi 40 Lo 34	Cooling 53, Heating 54	
			Power level dB	Hi 55 Lo 49	Cooling 66, Heating 67	

^{1.} Cooling capacities are based on indoor temp. 27°C D.B. (80.6°F D.B.), 19.0°C W.B. (66.2°F W.B.) and outdoor air temp. 35°C D.B. (95°F D.B.), 24°C W.B. (75.2°F W.B.)

MODEL / ITEM			CS-W28BD3P/CU-W28BBP8				
				Condition by JIS B 8615			
Volts	V	V 380		400	415		
Phase			3N	3N	3N		
Input Power	kW	Cool	2.72	2.72	2.72		
	1	Heat	2.86	2.86	2.86		
Running Current	A	Cool	4.60	4.60	4.60		
		Heat	4.50	4.50	4.50		
Starting Current	A		28	29	30		
Power Factor	%	Cool	90	85	82		
		Heat	97	92	88		
*Power Factor means t	otal figure of c	ompresso	r, indoor fan motor and outdoo	or fan motor.	•		
Panasonic	Power	Power source AC, 3N~380V, 400V, 415V 50Hz					

^{2.} Heating capacities are based on indoor temp. 20°C D.B. (68.0°F D.B.) and outdoor air temp. 7°C D.B. (44.6°F D.B.), 6°C W.B. (42.8°F D.B.)

3.5. CS-W34BD3P / CU-W34BBP8

	ITEM / MODEL	_		Indoor Unit	Outdoor unit	
			Main Body	CS-W34BD3P	CU-W34BBP8	
Cooling Capaci	ty		kW	10.	00	
			(BTU/h)	(34,100)		
Heating Capaci	ty		kW	11.20		
			(BTU/h)	(38,2	200)	
Refrigerant Cha	arge-less		m	30)	
Standard Air Vo	olume for High S	peed	m³/min	Hi 35		
			cfm	Hi 953		
External Static	Pressure		mmAq	Hi 5	-	
			Pa	Hi 49		
Air Inlet				Backward Suction	Back sided Suction	
Air Outlet				Front blow-out	Front blow-out	
Outside Dimens	sion (H x W x D)		mm	270 x (1500 + 100) x 650	1220 x 900 x 320	
Net Weight			kg (lbs)	54 (119)	97 (214)	
Piping	Refrigerant	Gas	mm (inch)	O.D Ø 19.05 (3/4) Flared Type		
Connection		Liquid	mm (inch)	O.D Ø 9.52 (3/8) Flared Type		
	Drain		mm	Female screw RC1 (PT1)	I.DØ 20 x 1	
Compressor	Type, Number	r of Set		-	Hermetic-1 (Scroll), 1	
	Starting Metho	od		-	Direct on-line starting	
	Motor	Туре		-	2-pole 3 phase induction motor	
		Rated Output	kW	-	3.0	
Fan	Type, Number	r of Set		Sirocco fan	Prop. fan	
	Air Volume Co	ontrol		Three-Step and Auto mode	-	
				(Remote Control)		
	Motor	Туре		4-pole single phase induction motor	6-pole single phase induction moto	
		Rated Output	kW	0.15	0.05 x 2	
Air-heat Exchar	nger			X-Louvre-fin type	X-Louvre-fin type	
Refrigerant Cor	ntrol			Capillary tube	Capillary tube	
Refrigerant Oil	(Charged)		L	-	MMMAPOE (1.3)	
Refrigerant (Ch	arged)		kg (oz)	-	R407C 3.3 (116)	
Running	Control Switch			Wired Remote Control	-	
Adjustment	Room Tempe	rature		Thermostat (Main Body)	-	
Safety Devices				Internal protector for compressor, Internal		
				heater, High pressure swi		
Noise Level			dB (A)	Hi 42 Lo 37	Cooling 56, Heating 58	
<u> </u>			Power level dB	Hi 57 Lo 52	Cooling 69, Heating 71	

^{1.} Cooling capacities are based on indoor temp. 27°C D.B. (80.6°F D.B.), 19.0°C W.B. (66.2°F W.B.) and outdoor air temp. 35°C D.B. (95°F D.B.), 24°C W.B. (75.2°F W.B.)

MODEL / ITEM			CS-W34BD3P/CU-W34BBP8				
				Condition by JIS B 8615			
Volts	V	V	V 380	380	400	415	
Phase			3N	3N	3N		
Input Power	kW	Cool	3.88	3.88	3.88		
		Heat	4.07	4.07	4.07		
Running Current	A	Cool	6.2	6.2	6.2		
		Heat	6.5	6.5	6.5		
Starting Current	A		39	41	42		
Power Factor	%	Cool	95	90	87		
		Heat	95	90	87		
*Power Factor means to	tal figure of c	ompresso	r, indoor fan motor and outdoo	r fan motor.	•		
Panasonic	Power	source	AC, 3N~380V, 400V, 415V 50Hz				

^{2.} Heating capacities are based on indoor temp. 20°C D.B. (68.0°F D.B.) and outdoor air temp. 7°C D.B. (44.6°F D.B.), 6°C W.B. (42.8°F D.B.)

3.6. CS-W43BD3P / CU-W43BBP8

IT	EM / MODEL			Indoor Unit	Outdoor unit	
			Main Body	CS-W43BD3P	CU-W43BBP8	
Cooling Capacity			kW	12.9	50	
			(BTU/h)	(42,600)		
Heating Capacity			kW	14.	0	
			(BTU/h)	(47,7	700)	
Refrigerant Charge	-less		m	30)	
Standard Air Volum	ne for High Spe	eed	m³/min	Hi 40		
			cfm	Hi 1413		
External Static Pres	ssure		mmAq	Hi 5	-	
			Pa	Hi 49		
Air Inlet				Backward Suction	Back sided Suction	
Air Outlet				Front blow-out	Front blow-out	
Outside Dimension	(H x W x D)		mm	270 x (1500 + 100) x 650	1220 x 1100 x 320	
Net Weight			kg (lbs)	55 (121)	114 (251)	
Piping Connection	Refrigerant	Gas	mm (inch)	O.D Ø 19.05 (3/4) Flared Type		
		Liquid	mm (inch)	O.D Ø 9.52 (3/8	B) Flared Type	
	Drain		mm	Female screw RC1 (PT1)	I.DØ 20 x 1	
Compressor	Type, Numbe	r of Set		-	Hermetic-1 (Scroll), 1	
	Starting Meth	od		-	Direct on-line starting	
	Motor	Туре		-	2-pole 3 phase induction motor	
		Rated Output	kW	-	3.75	
Fan	Type, Numbe	r of Set		Sirocco fan	Prop. fan	
	Air Volume C	ontrol		Three-Step and Auto mode	-	
				(Remote Control)		
	Motor	Туре		4-pole single phase induction motor	6-pole single phase induction motor	
		Rated Output	kW	0.2	0.055 x 2	
Air-heat Exchanger				X-Louvre-fin type	X-Louvre-fin type	
Refrigerant Control				Capillary tube	Capillary tube	
Refrigerant Oil (Ch			L	-	MMMAPOE (2.0)	
Refrigerant (Charge	ed)		kg (oz)	-	R407C 3.6 (127)	
Running	Control Switch			Wired Remote Control	-	
Adjustment	Room Tempe	rature		Thermostat (Main Body)	-	
Safety Devices				Internal protector for compressor, Internal heater, High pressure switch	ernal thermostat for F.M, Crankcase tch, Current Transformer	
Noise Level			dB (A)	Hi 43 Lo 39	Cooling 56, Heating 58	
			Power level dB	Hi 58 Lo 54	Cooling 69, Heating 71	

^{1.} Cooling capacities are based on indoor temp. 27°C D.B. (80.6°F D.B.), 19.0°C W.B. (66.2°F W.B.) and outdoor air temp. 35°C D.B. (95°F D.B.), 24°C W.B. (75.2°F W.B.)

MODEL / ITEM			CS-W43BD3P/CU-W43BBP8			
				Condition by JIS B 8615		
Volts	V	380		400	415	
Phase			3N	3N	3N	
Input Power	kW	Cool	4.49	4.49	4.49	
		Heat	4.66	4.66	4.66	
Running Current	А	Cool	7.8	7.8	7.8	
		Heat	8.0	8.0	8.0	
Starting Current	А		58	58	58	
Power Factor	%	Cool	87	83	80	
		Heat	89	84	81	
*Power Factor means tot	al figure of c	ompresso	r, indoor fan motor and outdoo	r fan motor.		
Panasonic	Power	source	AC, 3N~380V, 400V, 415V 50Hz			

^{2.} Heating capacities are based on indoor temp. 20°C D.B. (68.0°F D.B.) and outdoor air temp. 7°C D.B. (44.6°F D.B.), 6°C W.B. (42.8°F D.B.)

4 SPECIFICATION (COOLING ONLY TYPE)

4.1. CS-W18BD3P / CU-V18BBP5

l.	TEM / MODEL			Indoor Unit	Outdoor unit	
			Main Body	CS-W18BD3P	CU-V18BBP5	
Cooling Capacity			kW	5.00		
			(BTU/h)	(17,100)		
Refrigerant Charge	e-less		m	30)	
Standard Air Volur	me for High Spe	eed	m³/min	Hi 17	-	
			cfm	Hi 600		
External Static Pre	essure		mmAq	Hi 5	-	
			Pa	Hi 49		
Air Inlet				Backward Suction	Back sided Suction	
Air Outlet				Front blow-out	Front blow-out	
Outside Dimensior	n (H x W x D)		mm	270 x (780 + 100) x 650	900 x 900 x 320	
Net Weight			kg (lbs)	34 (75)	72 (159)	
Piping Connection	Refrigerant	Gas	mm (inch)	O.D Ø 12.7 (1/2	2) Flared Type	
		Liquid	mm (inch)	O.D Ø 6.35 (1/4	4) Flared Type	
	Drain	•	mm	Female screw RC1 (PT1)	I.DØ 20 x 1	
Compressor	Type, Number	of Set		-	Hermetic-1 (Rotary), 1	
	Starting Metho	od		-	Direct on-line starting	
	Motor	Туре		-	2-pole single phase induction motor	
		Rated Output	kW	-	1.3	
Fan	Type, Number	of Set		Sirocco fan	Prop. fan	
	Air Volume Co	ontrol		Three-Step and Auto mode	-	
				(Remote Control)		
	Motor	Туре		4-pole single phase induction motor	6-pole single phase induction motor	
		Rated Output	kW	0.085	0.05	
Air-heat Exchange				X-Louvre-fin type	X-Louvre-fin type	
Refrigerant Contro				Capillary tube	Capillary tube	
Refrigerant Oil (Ch			L	-	MEL56 (0.7)	
Refrigerant (Charg	jed)		kg (oz)	ı	R407C 2.8 (99)	
Running	Control Switch			Wired Remote Control	-	
Adjustment	Room Temper	ature		Thermostat (Main Body)	-	
Safety Devices				Internal protector for compressor, Inte		
				heater, High pressure swi		
Noise Level			dB (A)	Hi 37 Lo 33	50	
			Power level dB	Hi 52 Lo 48	63	

^{1.} Cooling capacities are based on indoor temp. 27°C D.B (80.6°F D.B.), 19.0°C W.B. (66.2°F W.B.) and outdoor air temp. 35°C D.B. (95°F D.B.), 24°C W.B. (75.2°F W.B.)

MODEL / ITEM			CS-W18BD3P/CU-V18BBP5			
				Condition by JIS B 8615		
Volts	V		220	230	240	
Phase			Single	Single	Single	
Input Power	kW	Cool	1.85	1.85	1.85	
Running Current	Α	Cool	8.50	8.20	7.90	
Starting Current	Α		38	40	42	
Power Factor	%	Cool	99	98	98	
*Power Factor means total figure of compressor			indoor fan motor and outdoor fan motor.			
Panasonic	Power source		AC, 1~220V, 230V, 240V 50Hz			

4.2. CS-W24BD3P / CU-V24BBP5

	TEM / MODEL			Indoor Unit	Outdoor unit	
			Main Body	CS-W24BD3P	CU-V24BBP5	
Cooling Capacity			kW	6.30		
			(BTU/h)	(21,500)		
Refrigerant Charge	-less		m	30)	
Standard Air Volun	ne for High Spee	ed	m³/min	Hi 20	-	
			cfm	Hi 706		
External Static Pre	ssure		mmAq	Hi 5	-	
			Pa	Hi 49		
Air Inlet				Backward Suction	Back sided Suction	
Air Outlet				Front blow-out	Front blow-out	
Outside Dimension	(H x W x D)		mm	270 x (1000 + 100) x 650	900 x 900 x 320	
Net Weight			kg (lbs)	40 (88)	80 (176)	
Piping Connection	Refrigerant	Gas	mm (inch)	O.D Ø 15.88 (5/	/8) Flared Type	
		Liquid		O.D Ø 6.35 (1/4	1) Flared Type	
	Drain	•	mm	Female screw RC1 (PT1)	I.DØ 20 x 1	
Compressor	Type, Number	of Set		-	Hermetic-1 (Rotary), 1	
	Starting Method	t		-	Direct on-line starting	
	Motor	Туре		-	2-pole single phase induction motor	
		Rated Output	kW	-	1.9	
Fan	Type, Number	of Set		Sirocco fan	Prop. fan	
	Air Volume Cor	ntrol		Three-Step and Auto mode	-	
				(Remote Control)		
	Motor	Туре		4-pole single phase induction motor	6-pole single phase induction motor	
		Rated Output	kW	0.085	0.05	
Air-heat Exchanger		-		X-Louvre-fin type	X-Louvre-fin type	
Refrigerant Control				Capillary tube	Capillary tube	
Refrigerant Oil (Ch	arged)		L	-	MEL56 (1.3)	
Refrigerant (Charge	ed)		kg (oz)	-	R407C 2.8 (99)	
Running	Control Switch			Wired Remote Control	-	
Adjustment	Room Temperature			Thermostat (Main Body)	-	
Safety Devices				Internal protector for compressor, Internal protector for compressor, Internal protector, High pressure swi		
Noise Level			dB (A)	Hi 39 Lo 33	52	
			Power level dB	Hi 54 Lo 48	65	

^{1.} Cooling capacities are based on indoor temp. 27°C D.B. (80.6°F D.B.), 19.0°C W.B. (66.2°F W.B.) and outdoor air temp. 35°C D.B. (95°F D.B.), 24°C W.B. (75.2°F W.B.)

MODEL / ITEM			CS-W24BD2P/CU-V24BBP8					
				Condition by JIS B 8615				
Volts	V		220	230	240			
Phase			Single	Single	Single			
Input Power	kW	Cool	2.56	2.56	2.56			
Running Current	Α	Cool	11.70	11.20	10.80			
Starting Current	Α		64	66	68			
Power Factor	%	Cool	99	99	99			
*Power Factor means total fig	gure of co	mpressor,	indoor fan motor and outdoor fan motor.					
Panasonic	Power	source	AC, 1~220V, 230V, 240V 50Hz					

4.3. CS-W24BD3P / CU-V24BBP8

ľ	TEM / MODEL			Indoor Unit	Outdoor unit	
			Main Body	CS-W24BD3P	CU-V24BBP8	
Cooling Capacity			kW	6.3	0	
			(BTU/h)	(21,5	500)	
Refrigerant Charge	-less		m	30)	
Standard Air Volum	ne for High Spee	ed	m³/min	Hi 20	-	
			cfm	Hi 706		
External Static Pres	ssure		mmAq	Hi 5	-	
			Pa	Hi 49		
Air Inlet				Backward Suction	Back sided Suction	
Air Outlet				Front blow-out	Front blow-out	
Outside Dimension	(H x W x D)		mm	270 x (1000 + 100) x 650	900 x 900 x 320	
Net Weight			kg (lbs)	40 (88)	80 (176)	
Piping Connection	Refrigerant	Gas	mm (inch)	O.D Ø 15.88 (5/	8) Flared Type	
		Liquid	mm (inch)	O.D Ø 6.35 (1/4	4) Flared Type	
	Drain	Drain		Female screw RC1 (PT1)	I.DØ 20 x 1	
Compressor	Type, Number	of Set		-	Hermetic-1 (Rotary), 1	
	Starting Metho	Starting Method		-	Direct on-line starting	
	Motor	Туре		-	2-pole 3-phase induction motor	
		Rated Output	kW	-	1.9	
Fan	Type, Number	of Set		Sirocco fan	Prop. fan	
	Air Volume Co	ontrol		Three-Step and Auto mode	-	
				(Remote Control)		
	Motor	Туре		4-pole single phase induction motor	6-pole single phase induction motor	
		Rated Output	kW	0.085	0.05	
Air-heat Exchanger				X-Louvre-fin type	X-Louvre-fin type	
Refrigerant Control				Capillary tube	Capillary tube	
Refrigerant Oil (Cha			L	-	MEL56 (1.3)	
Refrigerant (Charge	ed)		kg (oz)	-	R407C 2.8 (99)	
Running	Control Switch			Wired Remote Control	-	
Adjustment	Room Temper	ature		Thermostat (Main Body)	-	
Safety Devices				Internal protector for compressor, Internal heater, High pressure swi	ernal thermostat for F.M, Crankcase tch, Current Transformer	
Noise Level			dB (A)	Hi 39 Lo 33	52	
			Power level dB	Hi 54 Lo 48	65	

^{1.} Cooling capacities are based on indoor temp. 27°C D.B. (80.6°F D.B.), 19.0°C W.B. (66.2°F W.B.) and outdoor air temp. 35°C D.B. (95°F D.B.), 24°C W.B. (75.2°F W.B.)

MODEL / ITEM			CS-W24BD3P/CU-V24BBP8				
				Condition by JIS B 8615			
Volts	V		380 400 415				
Phase			3N	3N	3N		
Input Power	kW	Cool	2.42	2.42	2.42		
Running Current	Α	Cool	4.10	4.10	4.10		
Starting Current	Α		27	28	29		
Power Factor	%	Cool	85	84	81		
*Power Factor means total figure of compressor,			indoor fan motor and outdoor fan motor.				
Panasonic	Power	source	AC, 3N~380V, 400V, 415V 50Hz				

4.4. CS-W28BD3P / CU-V28BBP5

	TEM / MODEL			Indoor Unit	Outdoor unit
			Main Body	CS-W28BD3P	CU-V28BBP5
Cooling Capacity			kW	7.	10
			(BTU/h)	(24,	200)
Refrigerant Charge-	less		m	3	30
Standard Air Volum	e for High Spee	d	m³/min	Hi 25	-
			cfm	Hi 883	
External Static Pres	sure		mmAq	Hi 5	-
			Pa	Hi 49	
Air Inlet				Backward Suction	Back sided Suction
Air Outlet				Front blow-out	Front blow-out
Outside Dimension	(H x W x D)		mm	270 x (1000 + 100) x 650	900 x 900 x 320
Net Weight			kg (lbs)	40 (88)	81 (179)
Piping Connection	Refrigerant	Gas	mm (inch)	O.D Ø 15.88 (5	5/8) Flared Type
		Liquid	mm (inch)	O.D Ø 9.52 (3)	/8) Flared Type
	Drain		mm	Female screw RC1 (PT1)	I.DØ 20 x 1
Compressor	Type, Number	of Set		-	Hermetic-1 (Rotary), 1
	Starting Metho	od		-	Direct on-line starting
	Motor	Туре		-	2-pole single phase induction motor
		Rated Output	kW	-	2.0
Fan	Type, Number	of Set		Sirocco fan	Prop. fan
	Air Volume Co	ontrol		Three-Step and Auto mode	-
				(Remote Control)	
	Motor	Туре		4-pole single phase induction motor	6-pole single phase induction motor
		Rated Output	kW	0.115	0.05
Air-heat Exchanger				X-Louvre-fin type	X-Louvre-fin type
Refrigerant Control				Capillary tube	Capillary tube
Refrigerant Oil (Cha	• ,		L	-	MEL56 (1.3)
Refrigerant (Charged)			kg (oz)	-	R407C 3.3 (116)
Running Adjustment Control Switch			Wired Remote Control	-	
	Room Temper	ature		Thermostat (Main Body)	-
Safety Devices					ternal thermostat for F.M, Crankcase ritch, Current Transformer
Noise Level			dB (A)	Hi 40 Lo 34	53
			Power level dB	Hi 55 Lo 49	66

^{1.} Cooling capacities are based on indoor temp. 27°C D.B. (80.6°F D.B.), 19.0°C W.B. (66.2°F W.B.) and outdoor air temp. 35°C D.B. (95°F D.B.), 24°C W.B. (75.2°F W.B.)

MODEL / ITEM			CS-W28BD3P/CU-V28BBP5				
				Condition by JIS B 8615			
Volts	V		220	230	240		
Phase			Single	Single	Single		
Input Power	kW	Cool	2.86	2.86	2.86		
Running Current	Α	Cool	13.1	12.5	12.5		
Starting Current	Α		68	70	72		
Power Factor	%	Cool	99	95			
*Power Factor means total figure of compressor			indoor fan motor and outdoor fan motor.				
Panasonic	Power	source	urce AC, 1~220V, 230V, 240V 50Hz				

4.5. CS-W28BD3P / CU-V28BBP8

IT	EM / MODEL			Indoor Unit	Outdoor unit
			Main Body	CS-W28BD3P	CU-V28BBP8
Cooling Capacity			kW	7	.10
			(BTU/h)	(24	,200)
Refrigerant Charge-le	SS		m		30
Standard Air Volume			m³/min	Hi 25	-
			cfm	Hi 883	
External Static Press	ure		mmAq	Hi 5	-
			Pa	Hi 49	
Air Inlet				Backward Suction	Back sided Suction
Air Outlet				Front blow-out	Front blow-out
Outside Dimension (F	1 x W x D)		mm	270 x (1000 + 100) x 650	900 x 900 x 320
Net Weight			kg (lbs)	40 (88)	81 (179)
Piping Connection	Refrigerant	Gas	mm (inch)	O.D Ø 15.88 (5/8) Flared Type
		Liquid	mm (inch)	O.D Ø 9.52 (3	3/8) Flared Type
	Drain	•	mm	Female screw RC1 (PT1)	I.DØ 20 x 1
Compressor	Type, Number	of Set		-	Hermetic-1 (Rotary), 1
	Starting Method	d		-	Direct on-line starting
	Motor	Туре		-	2-pole 3-phase induction motor
		Rated Output	kW	-	2.0
Fan	Type, Number	of Set		Sirocco fan	Prop. fan
	Air Volume Cor	ntrol		Three-Step and Auto mode	-
				(Remote Control)	
	Motor	Туре		4-pole single phase induction motor	6-pole single phase induction motor
		Rated Output	kW	0.115	0.05
Air-heat Exchanger	•	•		X-Louvre-fin type	X-Louvre-fin type
Refrigerant Control				Capillary tube	Capillary tube
Refrigerant Oil (Charg	ged)		L	-	MEL56 (1.3)
Refrigerant (Charged)			kg (oz)	-	R407C 3.3 (116)
Running Adjustment	Control Switch			Wired Remote Control	-
	Room Tempera	ture		Thermostat (Main Body)	-
Safety Devices			Internal protector for compressor, In heater, High pressure sy	nternal thermostat for F.M, Crankcase witch, Current Transformer	
Noise Level			dB (A)	Hi 40 Lo 34	53
			Power level dB	Hi 55 Lo 49	66
			ı		

^{1.} Cooling capacities are based on indoor temp. 27°C D.B. (80.6°F D.B.), 19.0°C W.B. (66.2°F W.B.) and outdoor air temp. 35°C D.B. (95°F D.B.), 24°C W.B. (75.2°F W.B.)

MODEL / ITEM			CS-W28BD3P/CU-V28BBP8			
				Condition by JIS B 8615		
Volts	V		380	400	415	
Phase			3N	3N	3N	
Input Power	kW	Cool	2.72	2.72	2.72	
Running Current	Α	Cool	4.60	4.60	4.60	
Starting Current	Α		28	29	30	
Power Factor	%	Cool	90 85 82			
*Power Factor means total figure of compressor, indoor fan motor and outdoor fan motor.						
Panasonic	Power	source	A	C, 3N~380V, 400V, 415V 50H	łz	

4.6. CS-W34BD3P / CU-V34BBP8

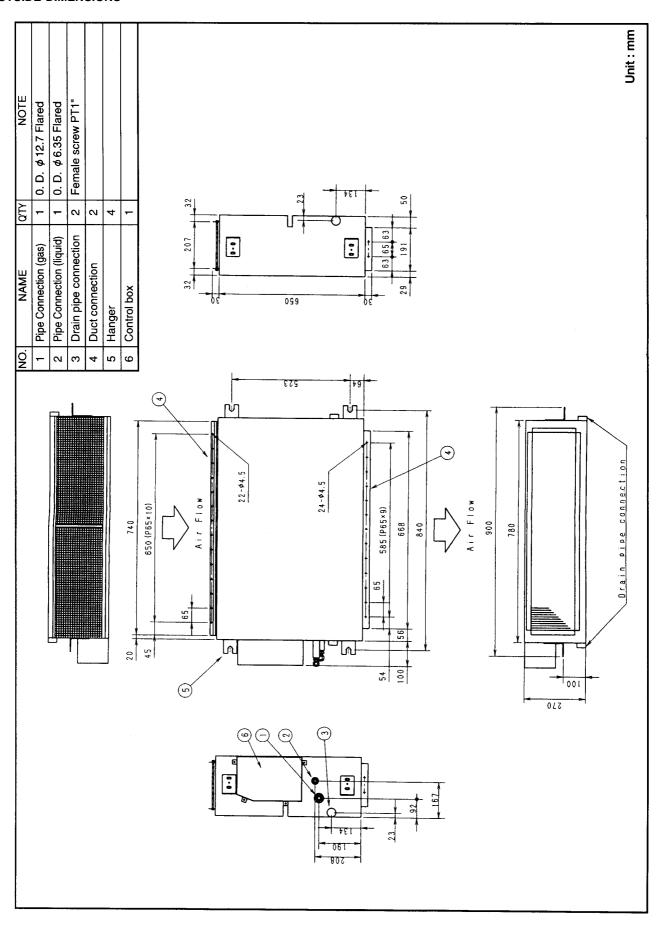
I	TEM / MODEL			Indoor Unit	Outdoor unit	
			Main Body	CS-W34BD3P	CU-V34BBP8	
Cooling Capacity			kW	10	.00	
			(BTU/h)	(34,100)		
Refrigerant Charge	-less		m	3	0	
Standard Air Volum	ne for High Spee	d	m³/min	Hi 35	-	
			cfm	Hi 953		
External Static Pres	ssure		mmAq	Hi 5	-	
			Pa	Hi 49		
Air Inlet				Backward Suction	Back sided Suction	
Air Outlet				Front blow-out	Front blow-out	
Outside Dimension	(H x W x D)		mm	270 x (1500 + 100) x 650	1220 x 900 x 320	
Net Weight			kg (lbs)	54 (119)	95 (209)	
Piping Connection	Refrigerant	Gas	mm (inch)	O.D Ø 19.05 (3	/4) Flared Type	
		Liquid	mm (inch)	O.D Ø 9.52 (3/	8) Flared Type	
	Drain		mm	Female screw RC1 (PT1)	I.DØ 20 x 1	
Compressor	Type, Number of	of Set		-	Hermetic-1 (Scroll), 1	
	Starting Method	tarting Method		-	Direct on-line starting	
	Motor	Туре		-	2-pole 3-phase induction motor	
		Rated Output	kW	-	3.00	
Fan	Type, Number of	of Set		Sirocco fan	Prop. fan	
	Air Volume Cor	ntrol		Three-Step and Auto mode	-	
				(Remote Control)		
	Motor	Туре		4-pole single phase induction motor	6-pole single phase induction motor	
		Rated Output	kW	0.15	0.05 x 2	
Air-heat Exchanger				X-Louvre-fin type	X-Louvre-fin type	
Refrigerant Control				Capillary tube	Capillary tube	
Refrigerant Oil (Ch.	arged)		L	-	MMMAPOE (1.3)	
Refrigerant (Charge	ed)		kg (oz)	-	R407C 3.2 (113)	
Running	Control Switch			Wired Remote Control	-	
Adjustment	Room Temperature			Thermostat (Main Body)	-	
Safety Devices					ternal thermostat for F.M, Crankcase itch, Current Transformer	
Noise Level			dB (A)	Hi 42 Lo 37	56	
			Power level dB	Hi 57 Lo 52	69	

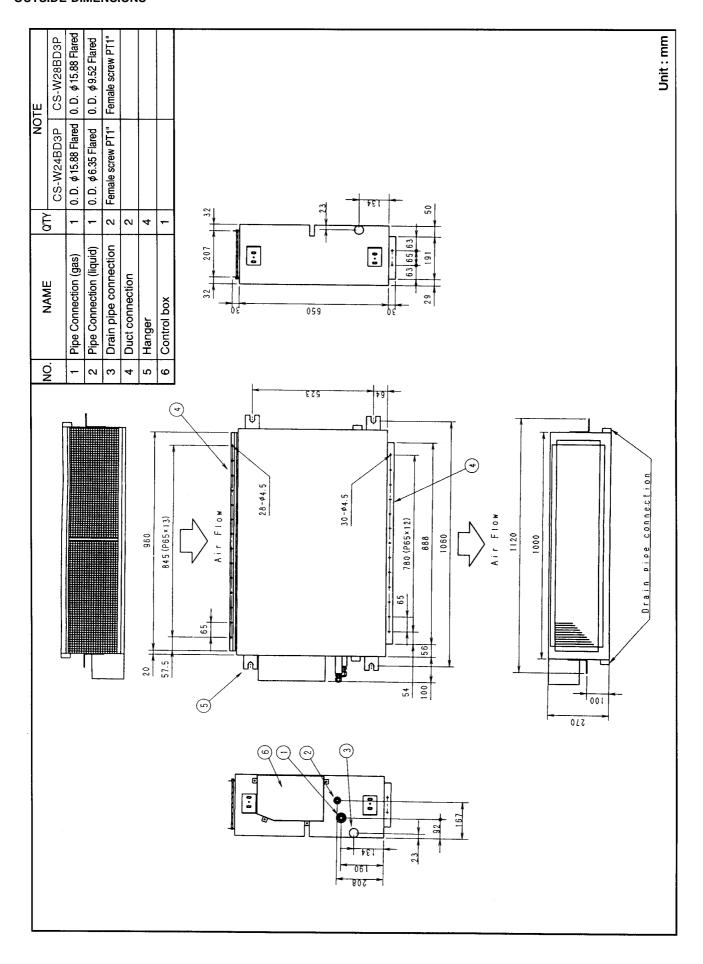
^{1.} Cooling capacities are based on indoor temp. 27°C D.B. (80.6°F D.B.), 19.0°C W.B. (66.2°F W.B.) and outdoor air temp. 35°C D.B. (95°F D.B.), 24°C W.B. (75.2°F W.B.)

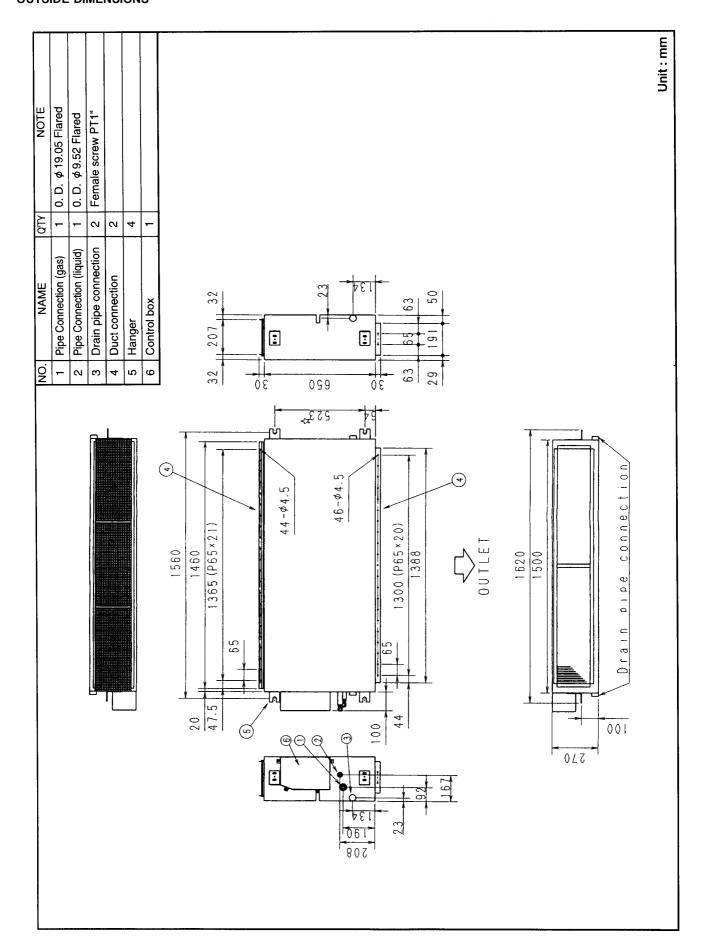
MODEL / ITEM			CS-W34BD3P/CU-V34BBP8				
				Condition by JIS B 8615			
Volts	V		380	400	415		
Phase			3N	3N	3N		
Input Power	kW	Cool	3.88	3.88	3.88		
Running Current	Α	Cool	6.2	6.2	6.2		
Starting Current	Α		39	41	42		
Power Factor	%	Cool	95	87			
*Power Factor means total fi	gure of co	mpressor,	indoor fan motor and outdoor f	an motor.	-		
Panasonic	Power	source	AC, 3N~380V, 400V, 415V 50Hz				

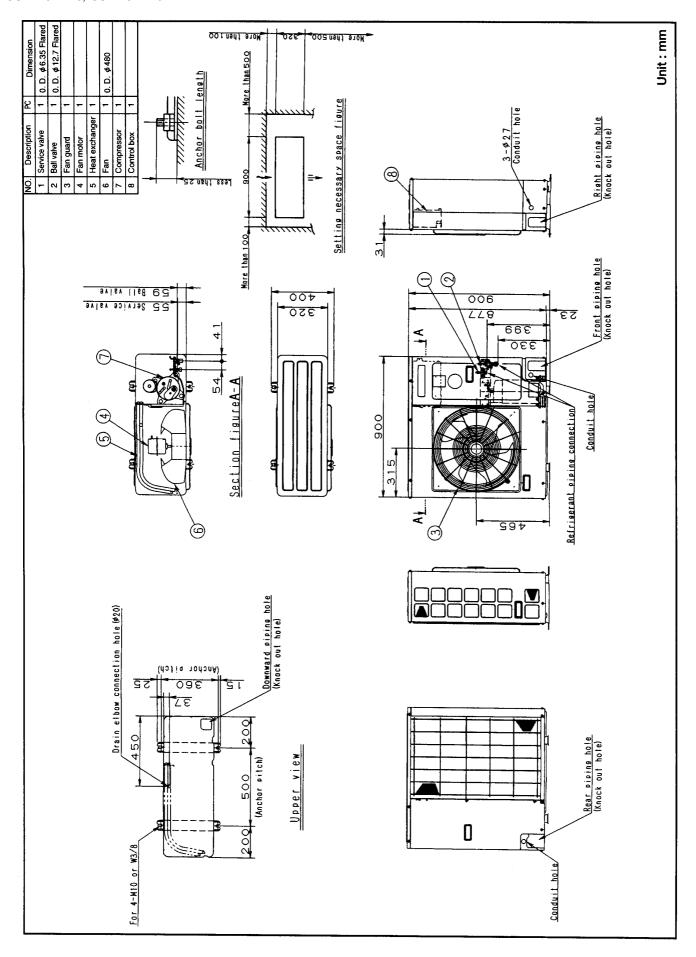
4.7. CS-W43BD3P / CU-V43BBP8

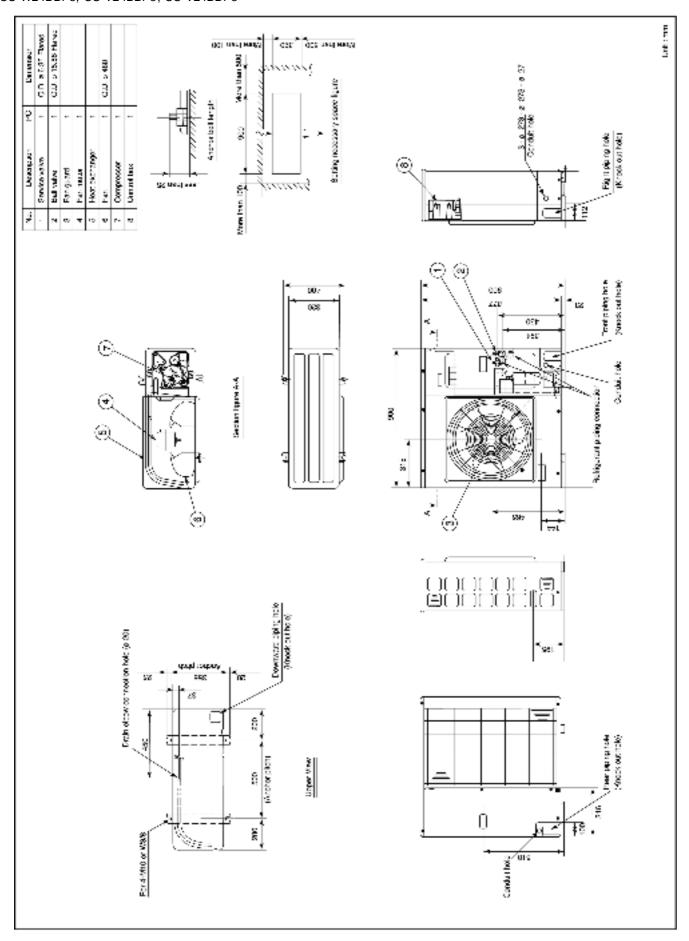
ITEM / MODEL				Indoor Unit	Outdoor unit	
			Main Body	CS-W43BD3P	CU-V43BBP8	
Cooling Capacity			kW	12.	50	
			(BTU/h)	(42,600)		
Refrigerant Charge-	less		m	30)	
Standard Air Volum	e for High Spee	ed	m³/min	Hi 40	-	
			cfm	Hi 1413		
External Static Pres	sure		mmAq	Hi 5	-	
			Pa	Hi 49		
Air Inlet				Backward Suction	Back sided Suction	
Air Outlet				Front blow-out	Front blow-out	
Outside Dimension	(H x W x D)		mm	270 x (1500 + 100) x 650	1220 x 1100 x 320	
Net Weight			kg (lbs)	55 (121)	111 (245)	
Piping Connection	Refrigerant	Gas	mm (inch)	O.D Ø 19.05 (3/	4) Flared Type	
		Liquid	mm (inch)	O.D Ø 9.52 (3/8	3) Flared Type	
	Drain		mm	Female screw RC1 (PT1)	I.DØ 20 x 1	
Compressor	Type, Number	of Set		-	Hermetic-1 (Scroll), 1	
	Starting Metho	d		-	Direct on-line starting	
	Motor	Туре		-	2-pole 3-phase induction motor	
		Rated Output	kW	-	3.75	
Fan	Type, Number	of Set		Sirocco fan	Prop. fan	
	Air Volume Co	ntrol		Three-Step and Auto mode	-	
				(Remote Control)		
	Motor	Туре		4-pole single phase induction motor	6-pole single phase induction motor	
		Rated Output	kW	0.20	0.055 x 2	
Air-heat Exchanger	-	•		X-Louvre-fin type	X-Louvre-fin type	
Refrigerant Control				Capillary tube	Capillary tube	
Refrigerant Oil (Cha	arged)		L	-	MMMAPOE (2.0)	
Refrigerant (Charge		_	kg (oz)		R407C 3.6 (127)	
Running	Control Switch			Wired Remote Control	-	
Adjustment	Room Temper	ature		Thermostat (Main Body)	-	
Safety Devices				Internal protector for compressor, Internal heater, High pressure swi		
Noise Level		_	dB (A)	Hi 43 Lo 39	56	
			Power level dB	Hi 58 Lo 54	69	

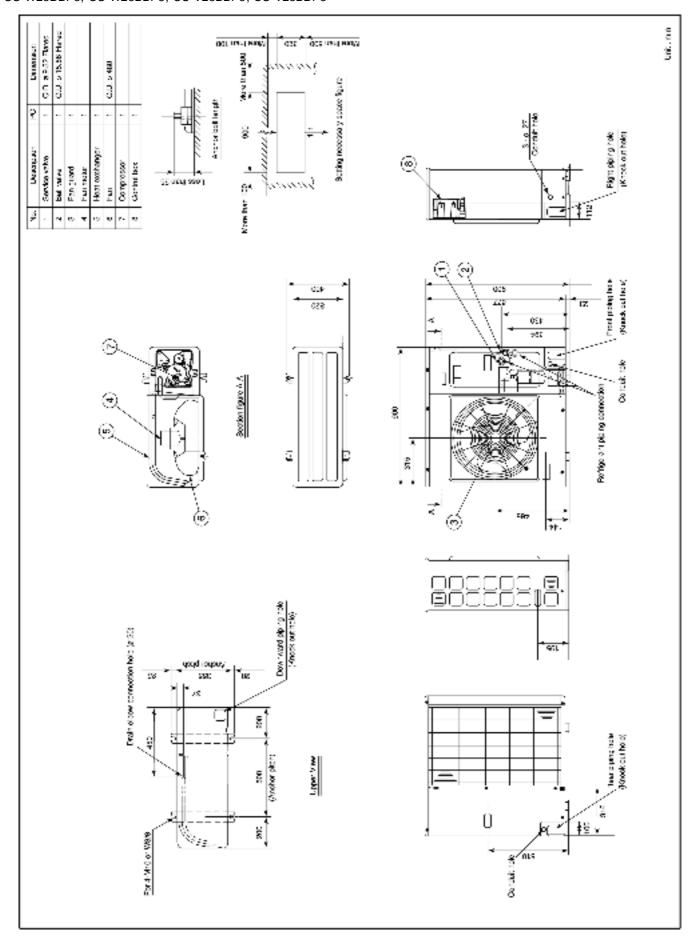

^{1.} Cooling capacities are based on indoor temp. 27°C D.B. (80.6°F D.B.), 19.0°C W.B. (66.2°F W.B.) and outdoor air temp. 35°C D.B. (95°F D.B.), 24°C W.B. (75.2°F W.B.)

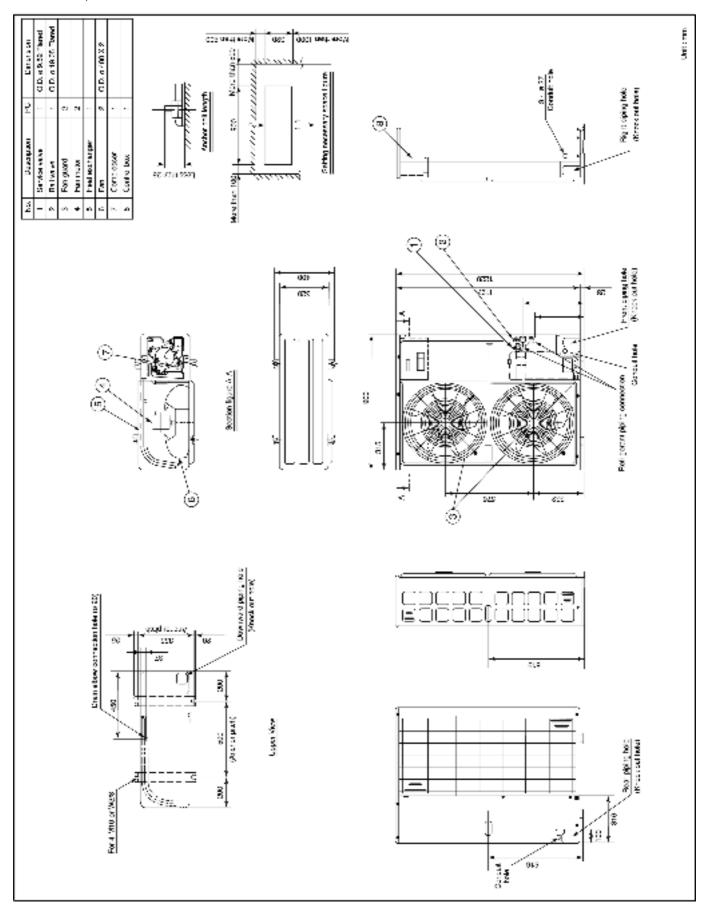

MODEL / ITEM			CS-W43BD3P/CU-V43BBP8				
				Condition by JIS B 8615			
Volts	V		380	380 400			
Phase			3N	3N	3N		
Input Power	kW	Cool	4.49	4.49	4.49		
Running Current	Α	Cool	7.8	7.8	7.8		
Starting Current	Α		58	58	58		
Power Factor	%	Cool	87 83 80				
*Power Factor means total fig	gure of co	mpressor	, indoor fan motor and outdoor f	an motor.			
Panasonic	Power	source	AC, 3N~380V, 400V, 415V 50Hz				

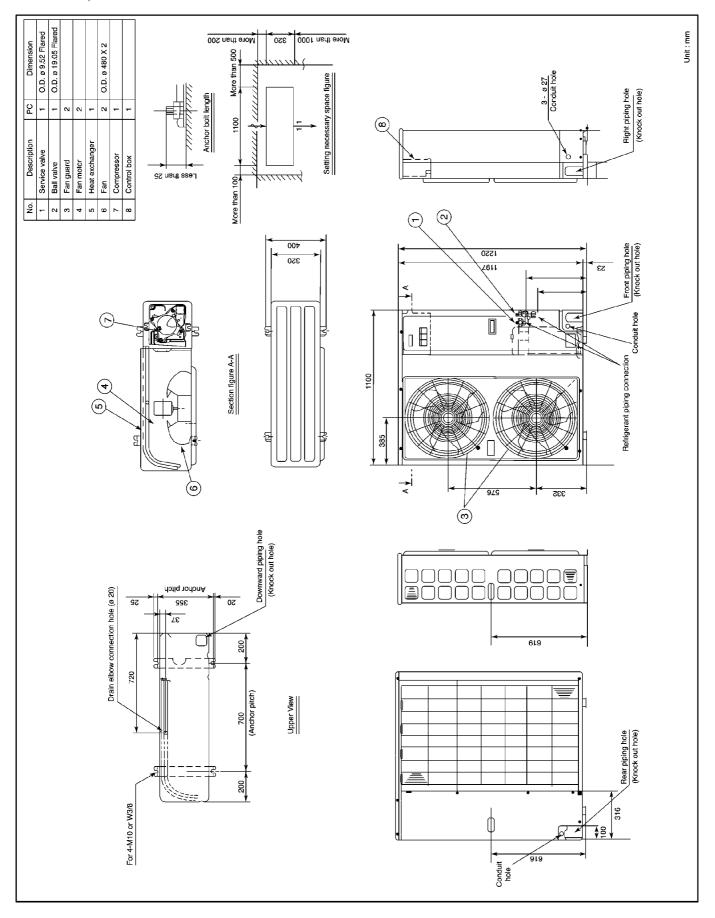

5 TECHNICAL DRAWING

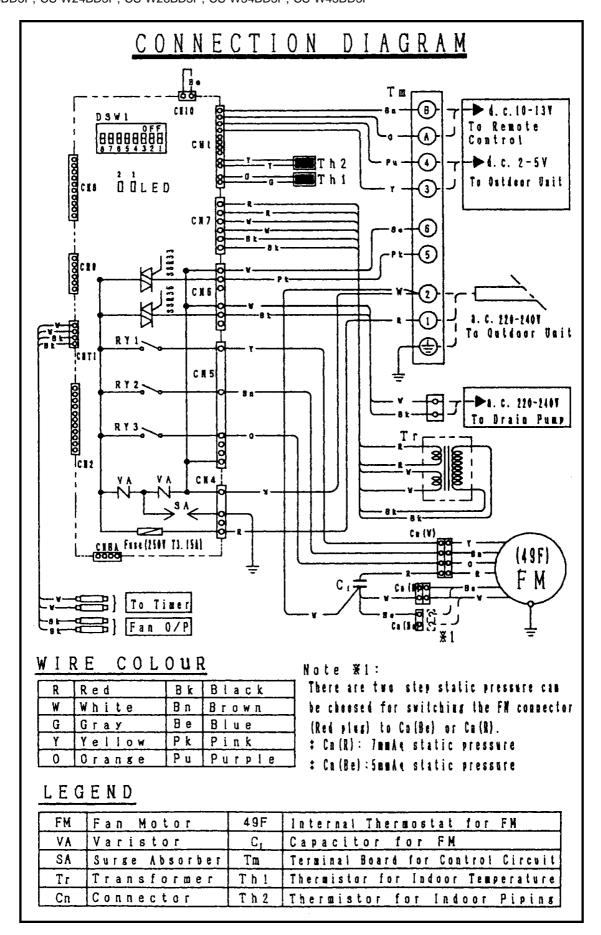

CS-W18BD3P

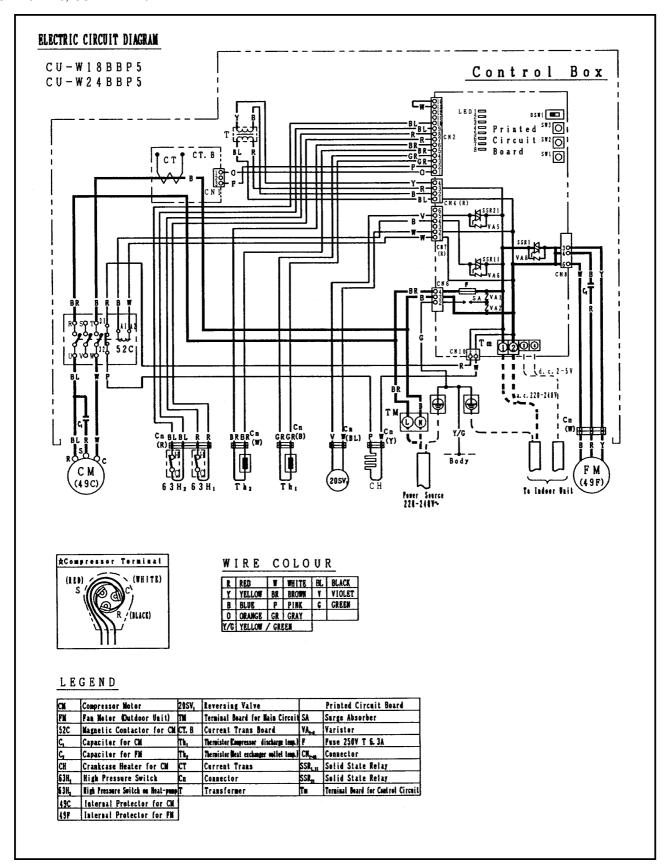

OUTSIDE DIMENSIONS

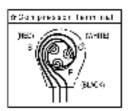




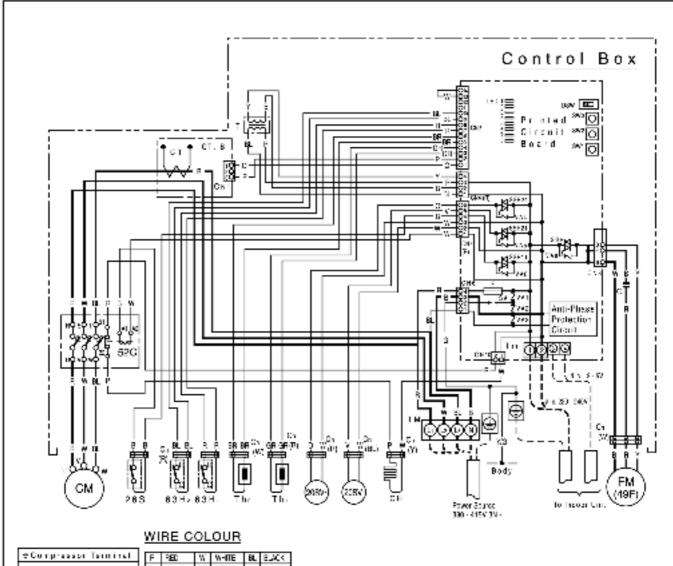


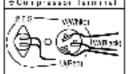



CU-W43BBP8, CU-V43BBP8


6 CIRCUIT DIAGRAM

CS-W18BD3P, CS-W24BD3P, CS-W28BD3P, CS-W34BD3P, CS-W43BD3P

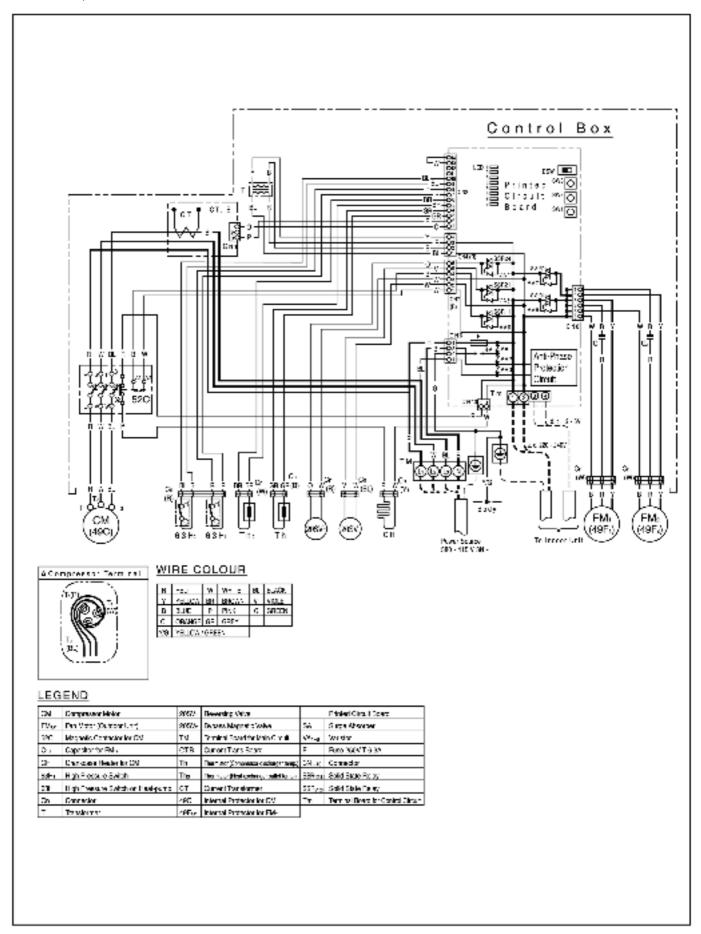


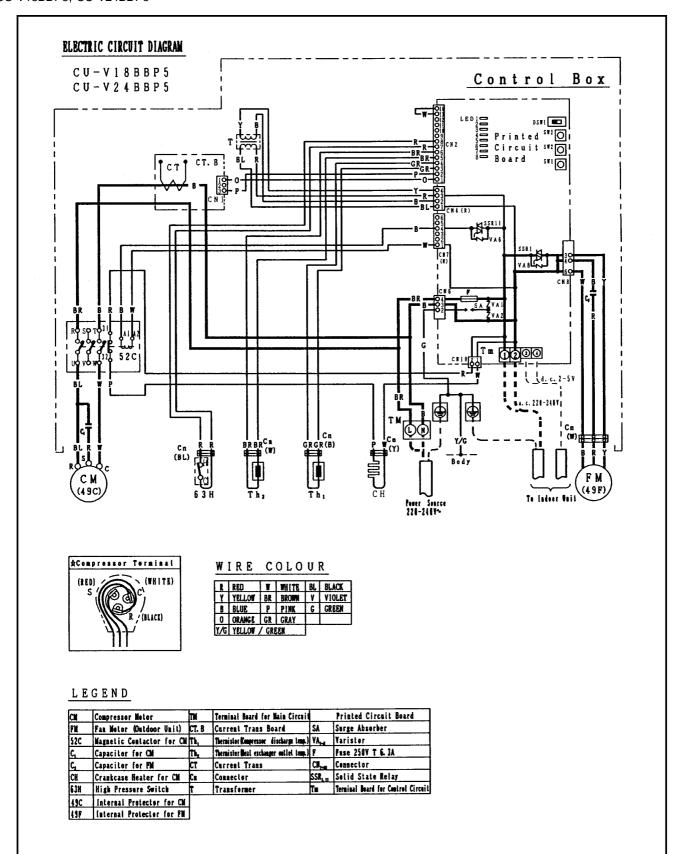

WIRE COLOUR

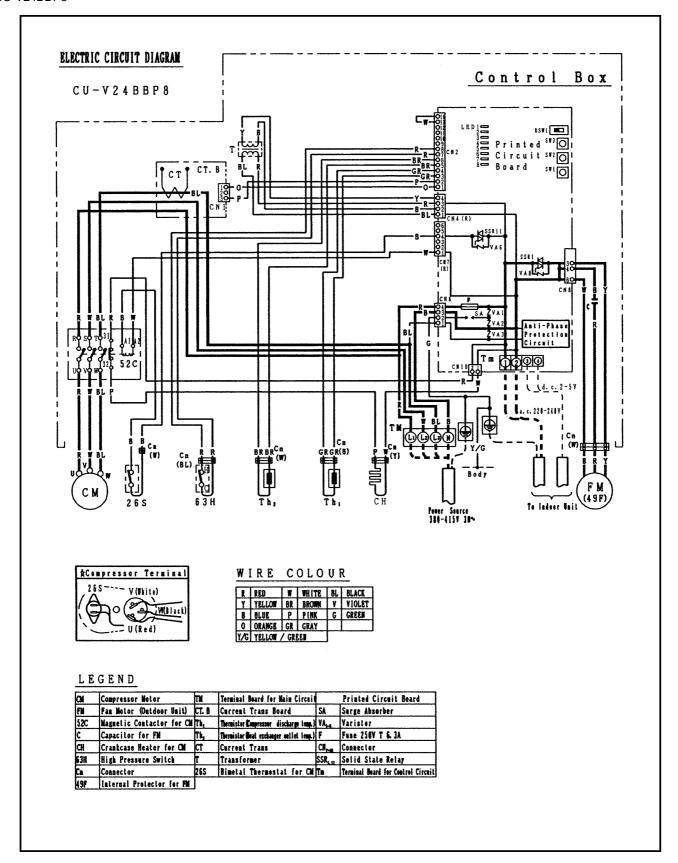
Ε.	RED	W	Š	8.	EL/ACK
y.	YELLOW	20	BIRCAN	7	VOLET
В	BLUE	Р	PINK	Э	3988
9	CHANCE	CII	CTEN		
W3	VBLICWY	383	8.		

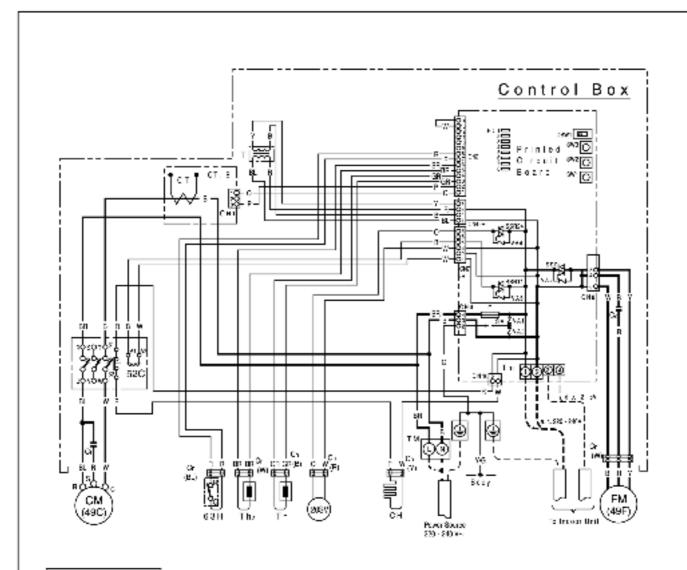
LEGEND

CVI	Compressor Motor	$209V_1$	Reversing Valve		Profed Capal Board
EN	Pan Molor (Outdoor Unit)	23.6%	Bypass Magnetic Valve	54	Surge Absorber
520	Magnetic Contactor for CN	TN	Terrainal Coardiffer Main Clicalli	West	Variotor
c_1	Department GM	CTB	Current Trans Board	Г	Fuer 250V T 85W
Cg	Capac be for HV	Th	The relation (Compressor clacks garlein out	ONema	Connector
CH	Charlessor Healer for CM	The	Denistr (Antodorpe entro)	988	Solid State Holey
esH:	High Pressure Switch	CT	Carror, Transformer	m_{ac}	Solid State Beby
6346	High Pressure Switch Hecopump	Ce	Coredo	To	Terminal Board for Central Circuit
4500	Internal Protector CN	T	Transformer		
48F	Internal Protector for PVI				

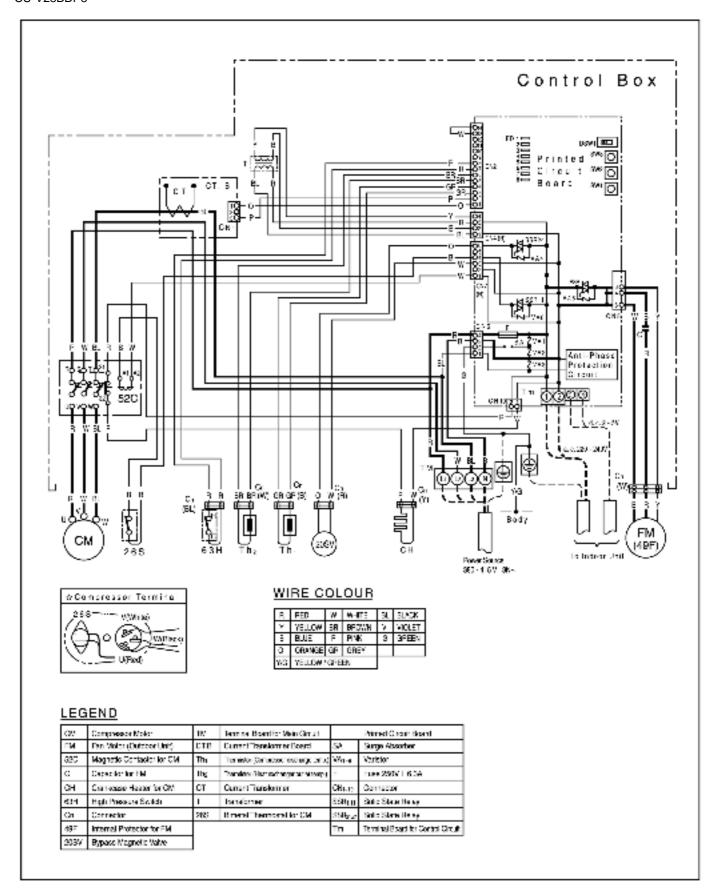


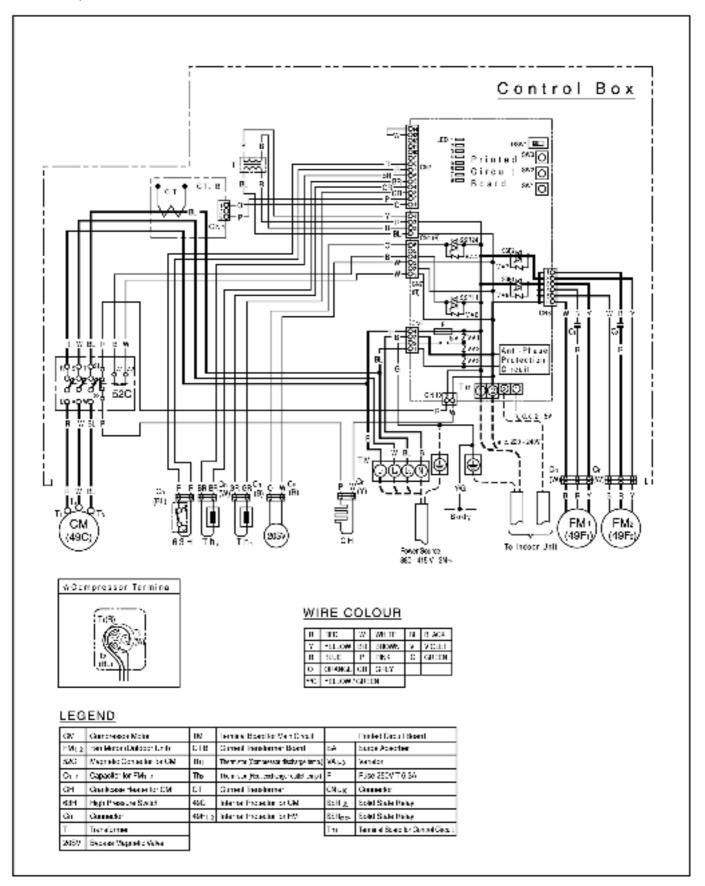


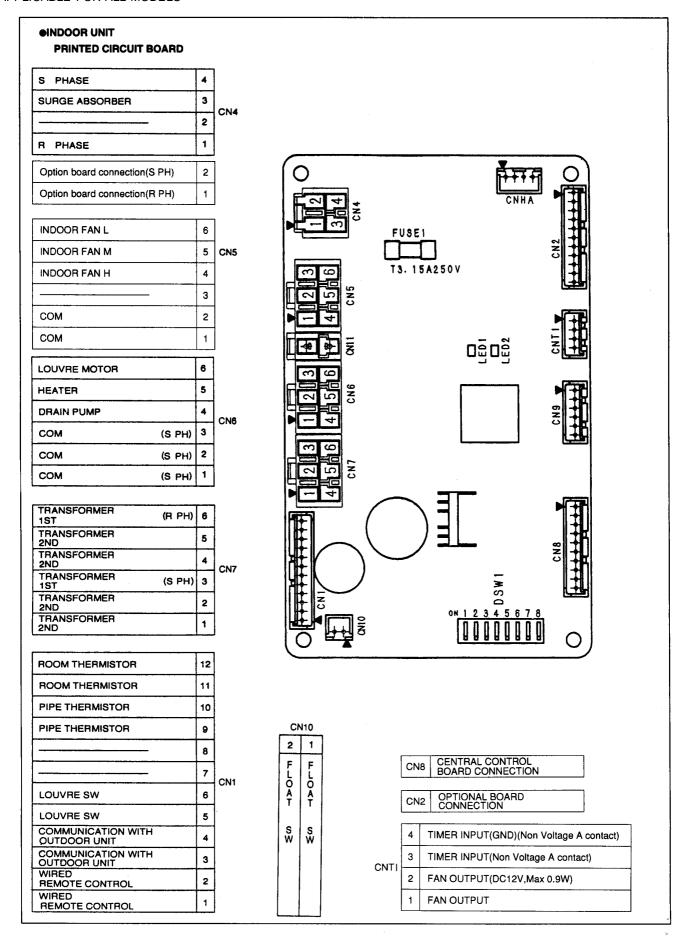

F	PE0	W	W-ITE	BL	BLACK
γ	YELLOW	BF.	BROWN	¥	VOLET
Б	BULE	Ρ	PINK	6	GREEN
0	ORMAGE	63	GREY		
yw,	TELLOW:	CHE			


LEGEND

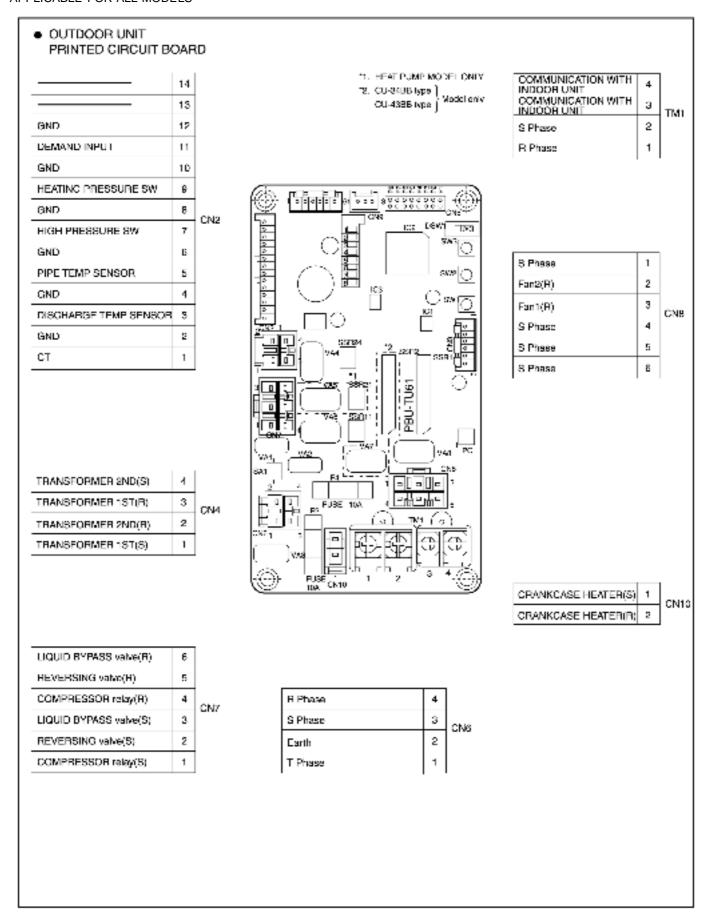
ON	Compressor Violar	2087/	Reversing Valve		Printed Circuit Board
ΞM	Fan Volor (Outdoor Unit)	203%	Bypass Magneto Valve	SA	Surge Asserber
52C	Nagratic Contactor for CN	ти	Terminal Reard for Wain Circuit	$W_{t=0}$	Verletor
G	Cepecitor for FM	GT.5	Current Trans Board	Γ	Fixed SSOVE KISA
αн	Cranicase Heater in CM	111	Thermitalor (Compasses of acrospos temp.)	CM . p	Corrector
ರಚ ಿಗ	High Pressure Switch	Tito	Translators feel exchanges cultification	389,11	Solid State Relay
68±	High Pressure Switch on Heat pump	CT	Current Transfermen	88900	Solid State Relay
On	Connector	T	Transformer	Tm	Terminal Beautiful Control Circuit
495	Internal Protector for FIV	333	Bimetal Thermostal for GM		

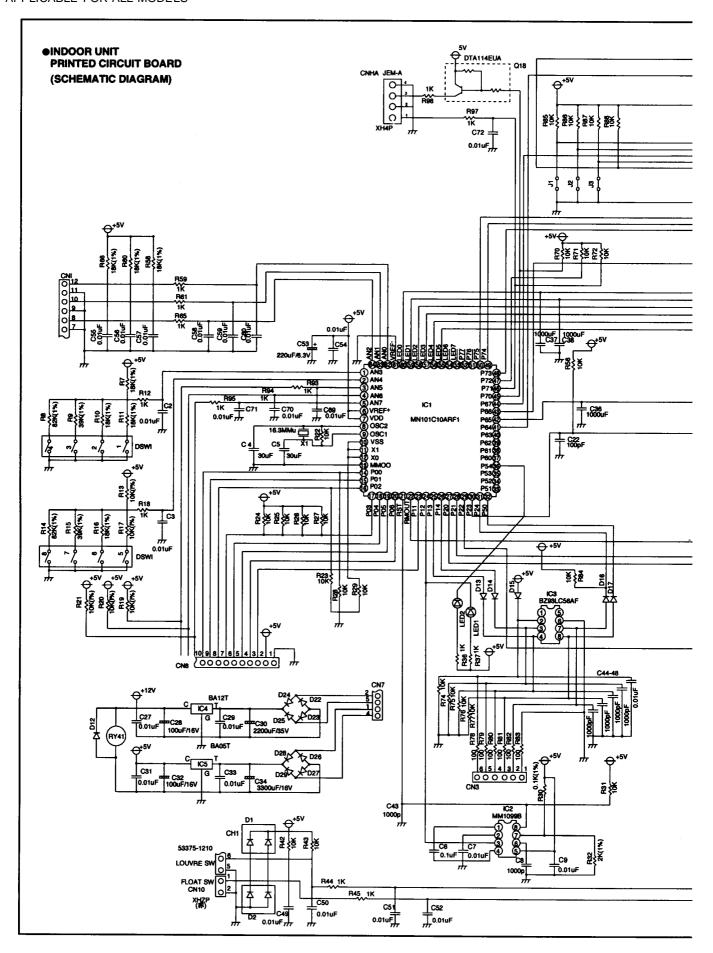


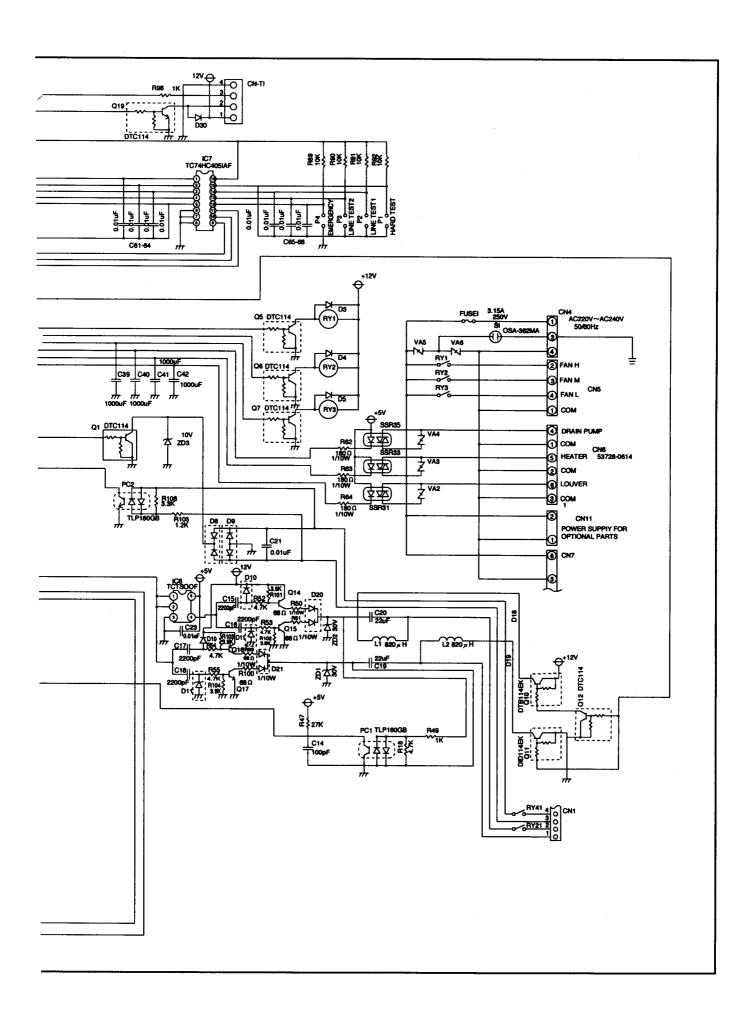

WIRE COLOUR

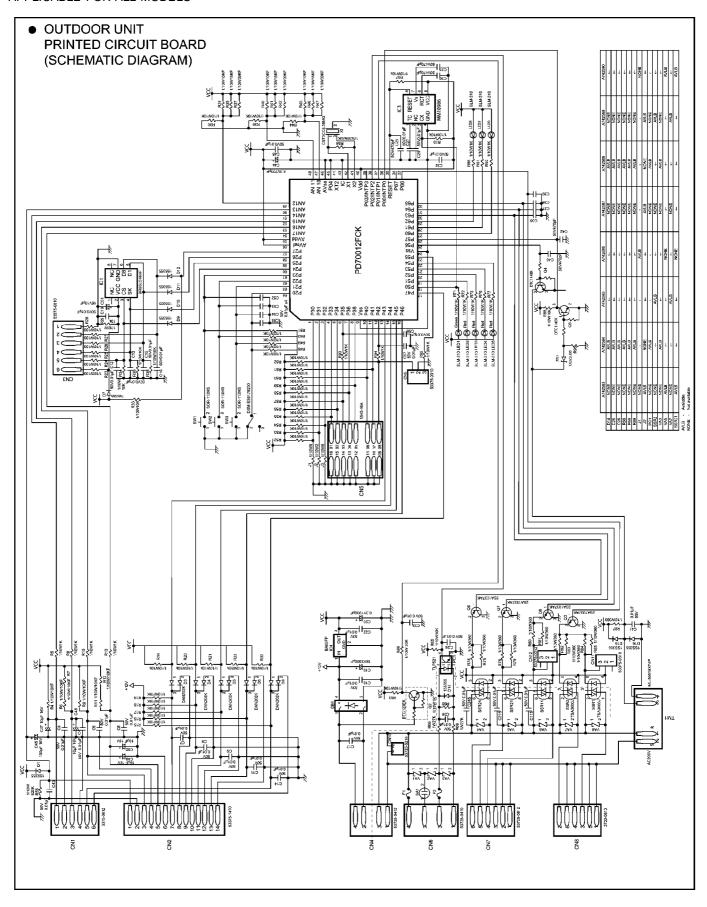

11	RED	w	WHITE	5L	SLACK
γ	78110 W	BFF	SROWN	7	VICLET
В	DITIE	P	PIME	2	SECTION
0	CRANGE	85.	3951		
WG.	79.10W/		FH		

LEGEND

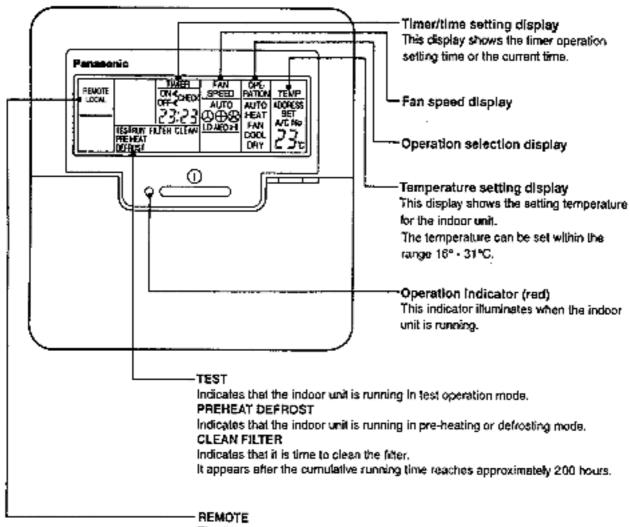

CW	Compressor Malor	TM.	Terrainal Brancher Main Costs:	Printed Creat Bloom		
EM	Fan Motor (Cuideor Unit)	CTJS	Current Transformer Scord	8/	Surge Absoncer	
72C	Vegnetic Contector for CVI	Thy	Transitor (Inappesso defrage page)	Wag	Variety	
O ₁	Capacitor for CM	Τř	The river (heal end urger salid strep)	F	Fusc 250VT 5.84	
ಾ	Capazi tor for RV	OT	Current Transformer	OH 15	Connector	
эн	Ordrigesse Heater for DV	On .	Connector	een ji	Sal 5 State Policy	
9314	-ligh Pressure Swiich	Т	Transformer	55R ₀₃₈	Sci o State Reby	
490	Internal Protector for CVI		•	Τn	To sinal Secotion Scaled Secon	
19F	Internal Protector for FM	7				
MSV.	Secure Manual: Value	1				







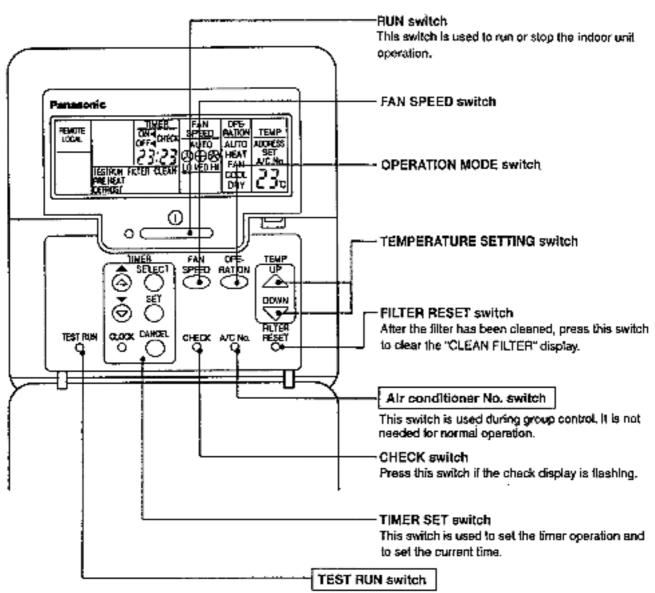
APPLICABLE FOR ALL MODELS



7 OPERATING INSTRUCTION

7.1. Wired Remote Control

Name and function of each part

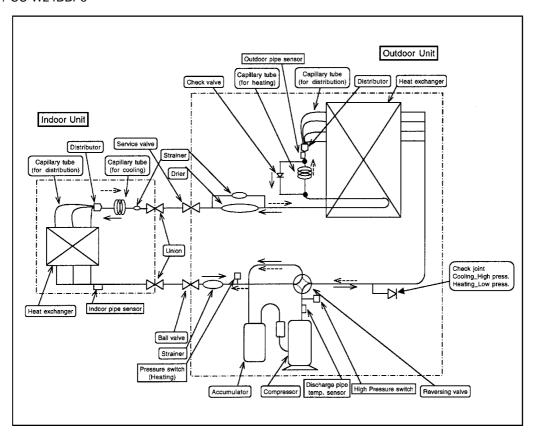


The RUN and STOP functions on the remote control unit cannot be used. LOCAL

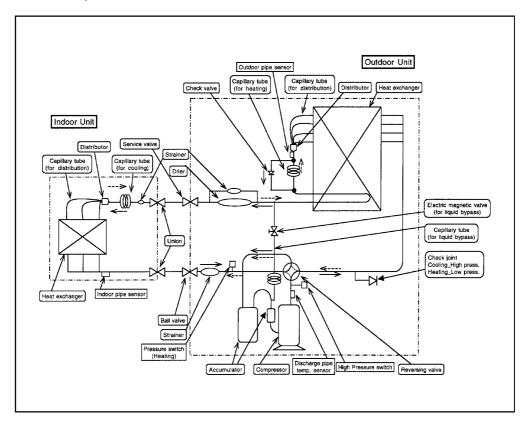
All remote control unit functions can be used.

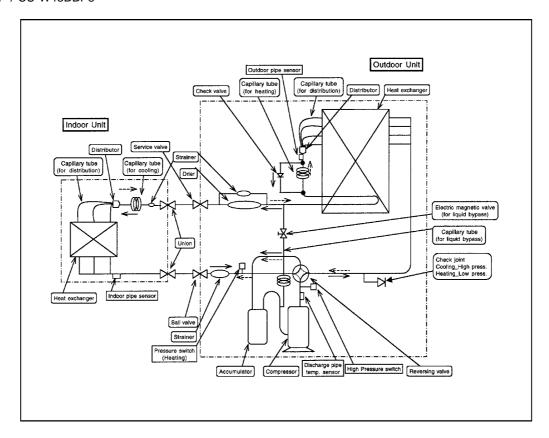
COMMON

Operation is possible using a device other than the remote control unit.

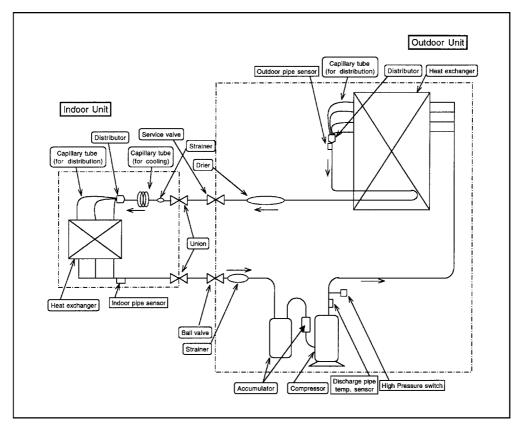


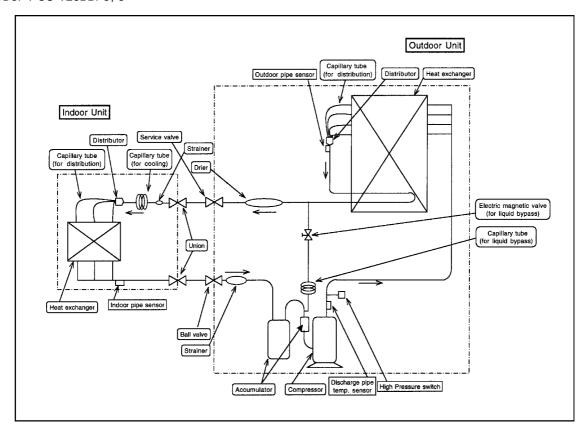
This switch is only used during test operation, it is not needed for normal operation.


8 REFRIGERATION CYCLE

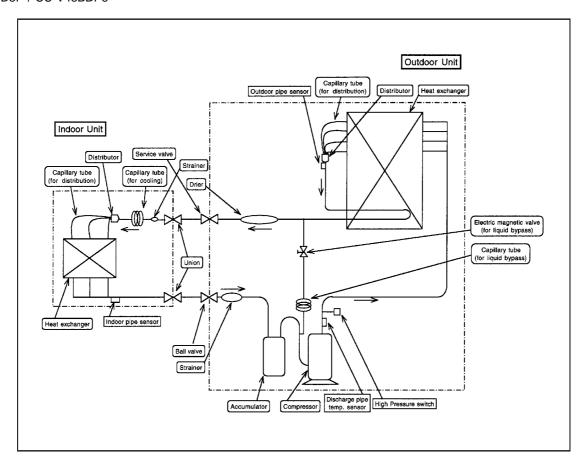

8.1. Heating Model

CS-W18BD3P / CU-W18BBP5 CS-W24BD3P / CU-W24BBP5


CS-W28BD3P / CU-W28BBP5, 8



8.2. Cooling Only Model


CS-W18BD3P / CU-V18BBP5 CS-W24BD3P / CU-V24BBP5, 8

CS-W28BD3P / CU-V28BBP5, 8

CS-W34BD3P / CU-V34BBP8 CS-W43BD3P / CU-V43BBP8

9 OPERATION RANGE

The applicable voltage range for each unit is given in "the following table". The working voltage among the three phases must be balanced within 3% deviation from each voltage at the compressor terminals. The starting voltage must be higher than 85% of the rated voltage.

Power Supply

Model	Unit Main Power		Applicable	le Voltage Model Unit Main Power Applicable Voltage		Unit Main Power Applicat		e Voltage	
CU-	1111, 111	Phase, Volts	Hz	Maximum	Minimum				
W18BBP5	1~220	50	242	198	207 W34BBP8	3N~380	50	418	342
W24BBP5	1~230	50	253	207		3N~400	50	440	360
W28BBP5 V18BBP5	1~240	50	264	216	W43BBP8 V24BBP8	3N~415	50	457	374
V24BBP5					V24BB1 0 V28BBP8				
V28BBP5					V34BBP8				
					V43BBP8				

Indoor and Outdoor Temperature

■ Cooling only type

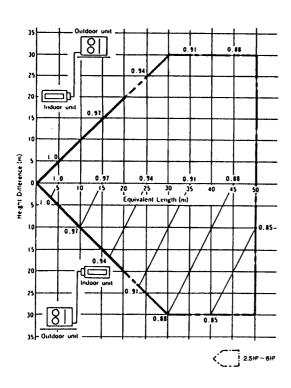
Model 50Hz ... V18BBP5, V24BBP5 (8), V28BBP5 (8), V34BBP8, V43BBP8

Operating	Hz	Indoor Temp. (D.B./W.B.) (°C)		Outdoor Temp. (D.B./W.B.) (°C)		
		Maximum Minimum		Maximum	Minimum	
Cooling	50	32/23	21/15	43/-	-5/-	

■ Heat pump type

Model 50Hz ... W18BBP5, W24BBP5, W28BBP5 (8), W34BBP8, W43BBP8

Operating	Hz	Indoor Temp. (D.B./W.B.) (°C)		Outdoor Temp. (D.B./W.B.) (°C)		
		Maximum Minimum		Maximum	Minimum	
Cooling	50	32/23	21/15	43/-	-5/-	
Heating	50	27/-	16/-	24/18	-10/-	


10 PIPE LENGTH

10.1. CORRECTION OF COOLING AND HEATING CAPACITIES

Correction of cooling and heating capacities according to the connecting pipe length.

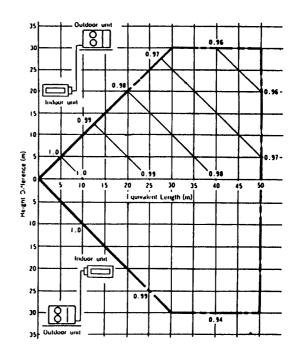
The data of cooling capacities (marked on the name plate) are based on 7.5 metres connecting pipe and horizontal installation.

(Cooling)

Equivalent Length = actual pipe length + number of elbow x ELE + number of oil trap x ELO

ELE: equivalent length of elbow. ELO: equivalent length of oil trap.

10.2. REFRIGERANT ADDITIONAL CHARGE


• The piping length exceeds 30 metres.

APPLICABLE FOR ALL MODELS

Before shipment, this air conditioner is filled with the rated amount of refrigerant subject to 30m piping length. (The rated amount of refrigerant is indicated on the name plate.) But when the piping length exceeds 30m, additional charge is required according to the following table.

For other pipe length of other installation multiply by the following correction factor to determine the revised cooling capacity.

(Heating)

Outer diameter of gas side pipe mm (inch)	ele 🖓
9.52	0.18
12.7 (1/2)	0.20
15.88 (5/8)	0.25
19.05 (3/4)	0.35

Model	Ref. Charge
2.0~2.5HP	20g per 1m
3~5HP	50g per 1m

Example:

CS-W24BD3P

In case of 30m long pipe (one-way), the amount of refrigerant to be replenished is: $(30 - 30) \times 20 = 0g$

CS-W43BD3P

In case of 50m long pipe (one-way), the amount of refrigerant to be replenished is: $(50 - 30) \times 50 = 1,000g$

10.3. Piping installation by existing piping

■ Cooling only type (50Hz)

Model Name	Standard piping specification								
	Liquid piping (dia.mm)	Gas piping (dia.mm)	Gas charge-less length	Additional gas volume (g/m)					
			(m)						
CU-V18BBP5	6.35	12.7	30	20					
CU-V24BBP5	6.35	15.88	30	20					
CU-V24BBP8	6.35	15.88	30	20					
CU-V28BBP5	9.52	15.88	30	50					
CU-V28BBP8	9.52	15.88	30	50					
CU-V34BBP8	9.52	19.05	30	50					
CU-V43BBP8	9.52	19.05	30	50					

■ Heat pump type (50Hz)

Model Name		Standard piping specification									
	Liquid piping (dia.mm)	Gas piping (dia.mm)	Gas charge-less length (m)	Additional gas volume (g/m)							
CU-W18BBP5	6.35	12.7	30	20							
CU-W24BBP5	6.35	15.88	30	20							
CU-W28BBP5	9.52	15.88	30	50							
CU-W28BBP8	9.52	15.88	30	50							
CU-W34BBP8	9.52	19.05	30	50							
CU-W43BBP8	9.52	19.05	30	50							

⚠ Attention

- Please never decrease the gas piping size. (It causes the breakdown of the compressor)
- The equivalent piping length and the cooling and heating capacity change rate are same as the standard piping specification.

11 OPERATING CHARACTERISTIC

HEAT PUMP MODEL

Model	Mair	n Power	Compressor Motor Inc		Indoo	r Unit	Outdoor Unit		Electrical Data (50Hz)		
	So	ource				Fan I	Motor	Fan I	Motor	R.C	IPT
	Voltage	Frequency	S.C.	R.C.(A)	IPT(kW)	R.C.	IPT	R.C.	IPT	(A)	(kW)
	(V)	(Hz)	(A)	COOL / HEAT	COOL / HEAT	(A)	(kW)	(A)	(kW)	COOL / HEAT	COOL / HEAT
CS-W18BD3P	220	50	38	7.49 / 7.59	1.63 / 1.66	0.60	0.13	0.41	0.09	8.50 / 8.60	1.85 / 1.88
CU-W18BBP5	230	50	40	7.19 / 7.29	1.63 / 1.66	0.60	0.13	0.41	0.09	8.20 / 8.30	1.85 / 1.88
	240	50	42	6.87 / 6.87	1.62 / 1.65	0.60	0.13	0.43	0.10	7.90 / 7.90	1.85 / 1.88
CS-W24BD3P	220	50	64	10.6 / 10.8	2.31 / 2.35	0.66	0.15	0.46	0.10	11.7 / 11.9	2.56 / 2.60
CU-W24BBP5	230	50	66	10.1 / 10.3	2.30 / 2.34	0.66	0.15	0.47	0.11	11.2 / 11.4	2.56 / 2.60
	240	50	68	9.7 / 9.8	2.30 / 2.34	0.66	0.15	0.48	0.11	10.8 / 10.9	2.56 / 2.60
CS-W28BD3P	220	50	68	11.8 / 12.5	2.57 / 2.73	0.84	0.19	0.46	0.10	13.1 / 13.8	2.86 / 3.02
CU-W28BBP5	230	50	70	11.2 / 11.9	2.56 / 2.72	0.84	0.19	0.47	0.11	12.5 / 13.2	2.86 / 3.02
	240	50	72	11.2 / 11.4	2.56 / 2.72	0.84	0.19	0.48	0.11	12.5 / 12.7	2.86 / 3.02
CS-W28BD3P	380	50	28	4.23 / 4.13	2.47 / 2.61	0.66	0.15	0.46	0.10	4.60 / 4.50	2.72 / 2.86
CU-W28BBP8	400	50	29	4.22 / 4.12	2.46 / 2.60	0.66	0.15	0.47	0.11	4.60 / 4.50	2.72 / 2.86
	415	50	30	4.22 / 4.12	2.46 / 2.60	0.66	0.15	0.48	0.11	4.60 / 4.50	2.72 / 2.86
CS-W34BD3P	380	50	39	4.32 / 4.62	3.46 / 3.65	0.97	0.22	0.91	0.20	6.20 / 6.50	3.88 / 4.07
CU-W34BBP8	400	50	41	4.29 / 4.59	3.45 / 3.64	0.97	0.22	0.94	0.21	6.20 / 6.50	3.88 / 4.07
	415	50	42	4.26 / 4.56	3.43 / 3.62	0.97	0.22	0.97	0.23	6.20 / 6.50	3.88 / 4.07
CS-W43BD3P	380	50	58	7.09 / 7.29	4.01 / 4.18	1.15	0.26	0.99	0.22	7.80 / 8.00	4.49 / 4.66
CU-W43BBP8	400	50	58	7.08 / 7.28	4.00 / 4.17	1.15	0.26	1.02	0.23	7.80 / 8.00	4.49 / 4.66
	415	50	58	7.07 / 7.27	3.98 / 4.15	1.15	0.26	1.04	0.25	7.80 / 8.00	4.49 / 4.66

COOLING ONLY MODEL

220	50	38	7.49	1.63	0.60	0.13	0.41	0.09	8.50	1.85
230	50	40	7.19	1.63	0.60	0.13	0.41	0.09	8.20	1.85
240	50	42	6.87	1.62	0.60	0.13	0.43	0.10	7.90	1.85
220	50	64	10.6	2.31	0.66	0.15	0.46	0.10	11.7	2.56
230	50	66	10.1	2.30	0.66	0.15	0.47	0.11	11.2	2.56
240	50	68	9.7	2.30	0.66	0.15	0.48	0.11	10.8	2.56
380	50	27	2.98	2.17	0.66	0.15	0.46	0.10	4.10	2.42
400	50	28	2.97	2.16	0.66	0.15	0.47	0.11	4.10	2.42
415	50	29	2.96	2.16	0.66	0.15	0.48	0.11	4.10	2.42
220	50	68	12.7	2.57	0.84	0.19	0.46	0.10	13.1	2.86
230	50	70	12.1	2.56	0.84	0.19	0.47	0.11	12.5	2.86
240	50	72	12.1	2.56	0.84	0.19	0.48	0.11	12.5	2.86
380	50	28	3.48	2.47	0.66	0.15	0.46	0.10	4.60	2.72
400	50	29	3.47	2.46	0.66	0.15	0.47	0.11	4.60	2.72
415	50	30	3.46	2.46	0.66	0.15	0.48	0.11	4.60	2.72
380	50	39	5.57	3.46	0.97	0.22	0.91	0.20	6.20	3.88
400	50	41	5.56	3.45	0.97	0.22	0.94	0.21	6.20	3.88
415	50	42	5.55	3.43	0.97	0.22	0.97	0.23	6.20	3.88
380	50	58	7.09	4.01	1.15	0.26	0.99	0.22	7.80	4.49
400	50	58	7.08	4.00	1.15	0.26	1.02	0.23	7.80	4.49
415	50	58	7.07	3.98	1.15	0.26	1.04	0.25	7.80	4.49
	230 240 220 230 240 380 400 415 220 230 240 380 400 415 380 400 415 380 400	230 50 240 50 220 50 230 50 240 50 380 50 400 50 415 50 230 50 240 50 380 50 400 50 415 50 380 50 400 50 415 50 380 50 400 50 415 50 380 50 400 50 400 50	230 50 40 240 50 42 220 50 64 230 50 66 240 50 68 380 50 27 400 50 28 415 50 29 220 50 68 230 50 70 240 50 72 380 50 28 400 50 29 415 50 30 380 50 39 400 50 41 415 50 42 380 50 58 400 50 58	230 50 40 7.19 240 50 42 6.87 220 50 64 10.6 230 50 66 10.1 240 50 68 9.7 380 50 27 2.98 400 50 28 2.97 415 50 29 2.96 220 50 68 12.7 230 50 70 12.1 240 50 72 12.1 380 50 28 3.48 400 50 29 3.47 415 50 30 3.46 380 50 39 5.57 400 50 41 5.56 415 50 58 7.09 400 50 58 7.08	230 50 40 7.19 1.63 240 50 42 6.87 1.62 220 50 64 10.6 2.31 230 50 66 10.1 2.30 240 50 68 9.7 2.30 380 50 27 2.98 2.17 400 50 28 2.97 2.16 415 50 29 2.96 2.16 220 50 68 12.7 2.57 230 50 70 12.1 2.56 240 50 72 12.1 2.56 380 50 28 3.48 2.47 400 50 29 3.47 2.46 415 50 39 5.57 3.46 400 50 41 5.56 3.45 415 50 42 5.55 3.43 380 50 <td< td=""><td>230 50 40 7.19 1.63 0.60 240 50 42 6.87 1.62 0.60 220 50 64 10.6 2.31 0.66 230 50 66 10.1 2.30 0.66 240 50 68 9.7 2.30 0.66 240 50 68 9.7 2.30 0.66 380 50 27 2.98 2.17 0.66 400 50 28 2.97 2.16 0.66 415 50 29 2.96 2.16 0.66 220 50 68 12.7 2.57 0.84 230 50 70 12.1 2.56 0.84 240 50 72 12.1 2.56 0.84 380 50 28 3.48 2.47 0.66 400 50 29 3.47 2.46 0.66</td><td>230 50 40 7.19 1.63 0.60 0.13 240 50 42 6.87 1.62 0.60 0.13 220 50 64 10.6 2.31 0.66 0.15 230 50 66 10.1 2.30 0.66 0.15 240 50 68 9.7 2.30 0.66 0.15 240 50 68 9.7 2.30 0.66 0.15 380 50 27 2.98 2.17 0.66 0.15 400 50 28 2.97 2.16 0.66 0.15 415 50 29 2.96 2.16 0.66 0.15 220 50 68 12.7 2.57 0.84 0.19 230 50 70 12.1 2.56 0.84 0.19 240 50 72 12.1 2.56 0.84 0.19 380</td><td>230 50 40 7.19 1.63 0.60 0.13 0.41 240 50 42 6.87 1.62 0.60 0.13 0.43 220 50 64 10.6 2.31 0.66 0.15 0.46 230 50 66 10.1 2.30 0.66 0.15 0.47 240 50 68 9.7 2.30 0.66 0.15 0.48 380 50 27 2.98 2.17 0.66 0.15 0.48 400 50 28 2.97 2.16 0.66 0.15 0.47 415 50 29 2.96 2.16 0.66 0.15 0.48 220 50 68 12.7 2.57 0.84 0.19 0.46 230 50 70 12.1 2.56 0.84 0.19 0.47 240 50 72 12.1 2.56 0.84 <</td><td>230 50 40 7.19 1.63 0.60 0.13 0.41 0.09 240 50 42 6.87 1.62 0.60 0.13 0.43 0.10 220 50 64 10.6 2.31 0.66 0.15 0.46 0.10 230 50 66 10.1 2.30 0.66 0.15 0.47 0.11 240 50 68 9.7 2.30 0.66 0.15 0.48 0.11 380 50 27 2.98 2.17 0.66 0.15 0.48 0.11 400 50 28 2.97 2.16 0.66 0.15 0.47 0.11 415 50 29 2.96 2.16 0.66 0.15 0.48 0.11 220 50 68 12.7 2.57 0.84 0.19 0.46 0.10 230 50 70 12.1 2.56 0.84</td><td>230 50 40 7.19 1.63 0.60 0.13 0.41 0.09 8.20 240 50 42 6.87 1.62 0.60 0.13 0.43 0.10 7.90 220 50 64 10.6 2.31 0.66 0.15 0.46 0.10 11.7 230 50 66 10.1 2.30 0.66 0.15 0.47 0.11 11.2 240 50 68 9.7 2.30 0.66 0.15 0.48 0.11 10.8 380 50 27 2.98 2.17 0.66 0.15 0.46 0.10 4.10 400 50 28 2.97 2.16 0.66 0.15 0.47 0.11 4.10 415 50 29 2.96 2.16 0.66 0.15 0.48 0.11 4.10 220 50 68 12.7 2.57 0.84 0.19 0.4</td></td<>	230 50 40 7.19 1.63 0.60 240 50 42 6.87 1.62 0.60 220 50 64 10.6 2.31 0.66 230 50 66 10.1 2.30 0.66 240 50 68 9.7 2.30 0.66 240 50 68 9.7 2.30 0.66 380 50 27 2.98 2.17 0.66 400 50 28 2.97 2.16 0.66 415 50 29 2.96 2.16 0.66 220 50 68 12.7 2.57 0.84 230 50 70 12.1 2.56 0.84 240 50 72 12.1 2.56 0.84 380 50 28 3.48 2.47 0.66 400 50 29 3.47 2.46 0.66	230 50 40 7.19 1.63 0.60 0.13 240 50 42 6.87 1.62 0.60 0.13 220 50 64 10.6 2.31 0.66 0.15 230 50 66 10.1 2.30 0.66 0.15 240 50 68 9.7 2.30 0.66 0.15 240 50 68 9.7 2.30 0.66 0.15 380 50 27 2.98 2.17 0.66 0.15 400 50 28 2.97 2.16 0.66 0.15 415 50 29 2.96 2.16 0.66 0.15 220 50 68 12.7 2.57 0.84 0.19 230 50 70 12.1 2.56 0.84 0.19 240 50 72 12.1 2.56 0.84 0.19 380	230 50 40 7.19 1.63 0.60 0.13 0.41 240 50 42 6.87 1.62 0.60 0.13 0.43 220 50 64 10.6 2.31 0.66 0.15 0.46 230 50 66 10.1 2.30 0.66 0.15 0.47 240 50 68 9.7 2.30 0.66 0.15 0.48 380 50 27 2.98 2.17 0.66 0.15 0.48 400 50 28 2.97 2.16 0.66 0.15 0.47 415 50 29 2.96 2.16 0.66 0.15 0.48 220 50 68 12.7 2.57 0.84 0.19 0.46 230 50 70 12.1 2.56 0.84 0.19 0.47 240 50 72 12.1 2.56 0.84 <	230 50 40 7.19 1.63 0.60 0.13 0.41 0.09 240 50 42 6.87 1.62 0.60 0.13 0.43 0.10 220 50 64 10.6 2.31 0.66 0.15 0.46 0.10 230 50 66 10.1 2.30 0.66 0.15 0.47 0.11 240 50 68 9.7 2.30 0.66 0.15 0.48 0.11 380 50 27 2.98 2.17 0.66 0.15 0.48 0.11 400 50 28 2.97 2.16 0.66 0.15 0.47 0.11 415 50 29 2.96 2.16 0.66 0.15 0.48 0.11 220 50 68 12.7 2.57 0.84 0.19 0.46 0.10 230 50 70 12.1 2.56 0.84	230 50 40 7.19 1.63 0.60 0.13 0.41 0.09 8.20 240 50 42 6.87 1.62 0.60 0.13 0.43 0.10 7.90 220 50 64 10.6 2.31 0.66 0.15 0.46 0.10 11.7 230 50 66 10.1 2.30 0.66 0.15 0.47 0.11 11.2 240 50 68 9.7 2.30 0.66 0.15 0.48 0.11 10.8 380 50 27 2.98 2.17 0.66 0.15 0.46 0.10 4.10 400 50 28 2.97 2.16 0.66 0.15 0.47 0.11 4.10 415 50 29 2.96 2.16 0.66 0.15 0.48 0.11 4.10 220 50 68 12.7 2.57 0.84 0.19 0.4

Legend:

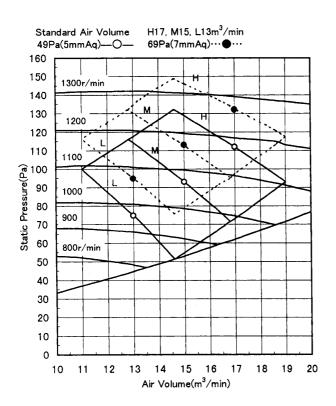
S.C.: Starting Current R.C.: Running Current IPT: Power Consumption

12 FAN PERFORMANCE

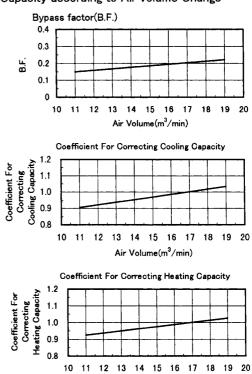
Fan Performance

	Model		CS-W18BD3P						
Ex	External Static Fa		Current	Power Consumption	Power Factor	RPM	Air Volume		
	Pressure	speed	(A)	(kW)	(%)	(r/min)	(m ³ /min)		
	69Pa(7mmAq)	Hi	0.64	0.14	95.1	1270	17		
Н	59Pa(6mmAq)	Ме	0.55	0.12	94.9	1170	15		
	49Pa(5mmAq)	Lo	0.51	0.11	93.8	1070	13		
	49Pa(5mmAq)	Hi	0.58	0.13	97.5	1180	17		
L	39Pa(4mmAq)	Ме	0.51	0.11	93.8	1070	15		
	29Pa(3mmAq)	Lo	0.46	0.10	94.5	960	13		

	Model		CS-W24BD3P								
E	External Static Fan		Current	Power Consumption	Power Factor	RPM	Air Volume				
	Pressure speed		(A)	(kW)	(%)	(r/min)	(m ³ /min)				
	69Pa(7mmAq)	Hi	0.71	0.16	98.0	1205	20				
H	59Pa(6mmAq)	Ме	0.62	0.14	98.2	1110	17.5				
	49Pa(5mmAq)	Lo	0.53	0.12	98.4	1005	15				
	49Pa(5mmAq)	Hi	0.66	0.15	98.8	1110	20				
L	39Pa(4mmAq)	Ме	0.58	0.13	97.5	1005	17.5				
	29Pa(3mmAq)	Lo	0.49	0.11	97.6	890	15				

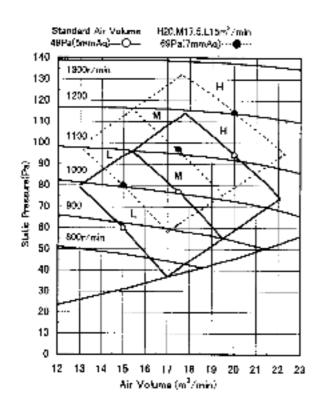

	Model	28BD3P					
Ex	External Static Fan		Current	Power Consumption	Power Factor	RPM	Air Volume
	Pressure speed		(A)	(kW)	(%)	(r/min)	(m ³ /min)
	69Pa(7mmAq)	Hi	0.88	0.20	98.8	1310	25
Н	59Pa(6mmAq)	Ме	0.75	0.17	98.6	1200	22
	49Pa(5mmAq)	Lo	0.66	0.15	98.8	1100	19
	49Pa(5mmAq)	Hi	0.84	0.19	98.3	1230	25
L	39Pa(4mmAq)	Ме	0.71	0.16	98.0	1120	22
	29Pa(3mmAq)	Lo	0.62	0.14	98.2	990	19

	Model		CS-W34BD3P								
E×	External Static Fan		Current	Power Consumption	Power Factor	RPM	Air Volume				
	Pressure	speed	(A)	(kW)	(%)	(r/min)	(m ³ /min)				
	69Pa(7mmAq)	Hi	1.10	0.25	98.8	1330	35				
Н	59Pa(6mmAq)	Ме	0.97	0.22	98.6	1190	30				
	49Pa(5mmAq)	Lo	0.80	0.18	97.8	1070	25				
	49Pa(5mmAq)	Ξ	0.97	0.22	98.6	1230	35				
L	39Pa(4mmAq)	Ме	0.80	0.18	97.8	1100	30				
	29Pa(3mmAq)	Lo	0.68	0.15	95.9	950	25				

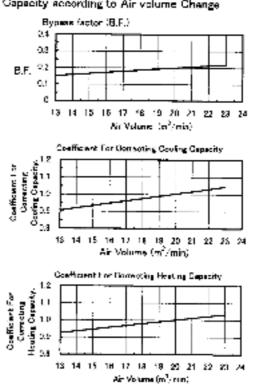

		Model		CS-W43BD3P								
	External Static Fan		Fan	Current	Power Consumption	Power Factor	RPM	Air Volume				
		Pressure	speed	(A)	(kW)	(%)	(r/min)	(m³/min)				
		69Pa(7mmAq)	Hi	1.21	0.27	97.0	1360	40				
١	н [59Pa(6mmAq)	Ме	1.03	0.23	97.1	1230	35				
		49Pa(5mmAq)	Lo	0.92	0.20	94.5	1110	30				
		49Pa(5mmAq)	Hi	1.15	0.26	98.3	1270	40				
1	L	39Pa(4mmAq)	Ме	1.02	0.23	98.0	1140	35				
L		29Pa(3mmAq)	Lo	0.90	0.20	96.6	1000	30				

● CS-W18BD3P

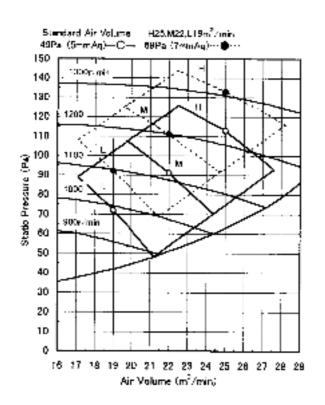
Fan Performance Curve



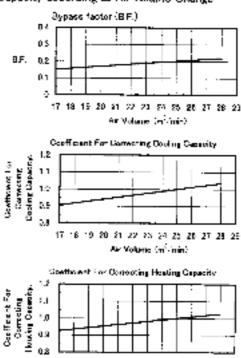
Bypass factor And Coefficient For Correcting Capacity according to Air volume Change


● CS-W24BD3P

Fan Performance Curve

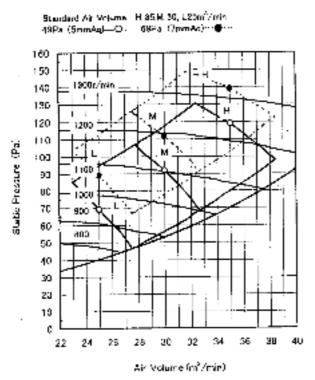

Bypess factor And Coefficient For Correcting Capacity according to Air volume Change

Air Volume (m³/min)

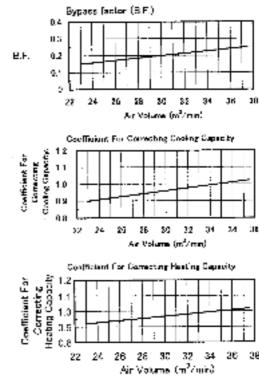


● CS-W28BD3P

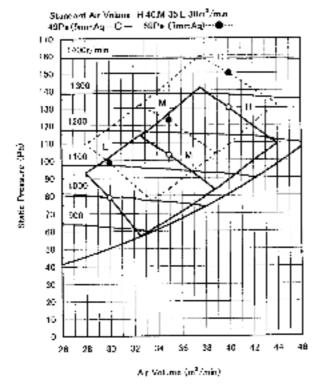
Fan Performance Curve



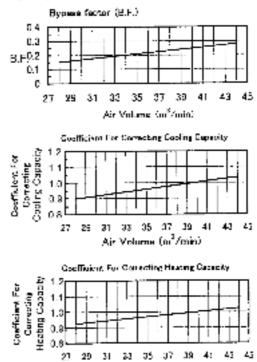
Bypass factor And Coefficient For Correcting Capacity according to Air valume Change


● CS-W34BD3P

Fan Performance Curve


Bypass fector And Coefficient For Correcting Copacity according to Air volume Change

17 18 19 70 21 22 23 24 25 26 27 76 79 Air Volume (m² mm)



● CS-W43BD3P

Fan Performance Curve

Bypass factor And Coefficient For Correcting Capacity according to Air volume Change

Air Volume (m⁹/min)

13 SAFETY DEVICE

• INDOOR UNIT

Indoor unit		Model	CS-						
			W18BD3P	W24BD3P	W24BD3P	W28BD3P	W28BD3P	W34BD3P	W43BD3P
For fan motor protection									
Internal	OFF	°C	135	135	135	135	135	135	135
Protector (49F)	ON	°C	87	87	87	87	87	87	87
For control protection									
Fuse	CUT	Α	3.15	3.15	3.15	3.15	3.15	3.15	3.15

• OUTDOOR UNIT

Outdoor unit		Heat pump model	50Hz	CU- W18BBP5	CU- W24BBP5	-	CU- W28BBP5	CU- W28BBP8	CU- W34BBP8	CU- W43BBP8
		Cooling only model	50Hz	CU- V18BBP5	CU- V24BBP5	CU- V24BBP8	CU- V28BBP5	CU- V28BBP8	CU- V34BBP8	CU- V43BBP8
For refrigera	nt cycle									
High pressur	·e	OFF	MPa	3.1	3.1	3.1	3.1	3.1	3.1	3.1
switch (63H1	1)	ON	MPa	2.3	2.3	2.3	2.3	2.3	2.3	2.3
For compres Over current										
	Heat pump model	OFF	Α	15	17	-	23	8	11	13
	Cooling only model	OFF	A 50Hz	15	17	7	23	8	11	13
		RESET	-	Automatic	Automatic	Automatic	Automatic	Automatic	Automatic	Automatic
Discharge te protection	mp.						-	-		
Discharge te thermistor (T		Com- pressor OFF	°C	115	115	115	120	120	120	120
Liquid compi	ress		•							
protection		Input	W	26~31	31~37	31~37	31~37	31~37	34~41	34~41
Crankcase h		power								
Compressor			1		Lean					
Internal prote	ector	OFF	°C 50Hz	150	160	120	160	120	145	135
		ON	°C 50Hz	90	90	90	90	90	61	61
		Trip time	°C	3-10sec/ 52A	5-15sec/ 74A	-	5-15sec/ 74A	-	3-10sec/ 37A	2-10sec/ 45A
For fan moto	or									
protection		OFF	°C 50Hz	135	135	135	135	135	135	135
Internal prote (49F)		ON	°C 50Hz	85	85	85	85	85	85	85
Heating cont (Heat pump										
Pressure sw		OFF	MPa	2.35	2.35	2.35	2.35	2.35	2.35	2.35
(Fan speed)		ON	MPa	1.96	1.96	1.96	1.96	1.96	1.96	1.96
Cooling cont			_							
Heat exchanger outlet temperature thermistor (Th2) Control method (Th2)				Th ⋅ 30°CHigh speed Th<30°C5 speed step control						
For control p	rotection									
Fuse		CUT	Α	6.3	6.3	6.3	6.3	6.3	6.3	6.3

14 COMPONENT SPECIFICATION

Compressor

Models	Heat pump model	50Hz	CU-W18BBP5	CU-W24BBP5	CU-W28BBP5 CU-W28BBP8	CU-W34BBP8	CU-W43BBP8
Cooling only model		50Hz	CU-V18BBP5	CU-V24BBP5 CU-V24BBP8	CU-V28BBP5 CU-V28BBP8	CU-V34BBP8	CU-V43BBP8
		60Hz	-	-	-	-	-
Compressor Mo	del		PE31VNEMT	NE41VNHMT	NE44VNHMT	ZR48KCE-TFD	ZR57KCE-TFD
				NE41YDNMT	NE44YDNMT		
Compressor Typ				ROTARY	SCR	OLL	
No. of Cylinders	3		1	1	1	1	1
Revolution		r/min.	2,900	2,900	2,900	2,900	2,900
Piston Displace	ment	m³/h	5.43	7.27	7.73	11.39	13.42
Motor Type				-	-	-	
Starting M	ethod				irect on-line Startin	ıg	
Rated Out	put	kW	1.3	1.9	2.0	3.0	3.5
Poles Insulation	Glass		2 E	2 E	2 E	2 E	2 E
Oil Type			MEL56	MEL56	MEL56	MMMAPOE	MMMAPOE
Charge		L	0.7	1.3	1.3	1.3	2.0

Evaporator

Models		CS-W18BD3P	CS-W24BD3P	CS-W28BD3P	CS-W34BD3P	CS-W43BD3P
		CO-W TODDOP	C3-W24BD3F		C3-W34BD3F	C3-W43BD3P
Tube Material				Copper Tube		
Outer Diameter	mm	9.52	9.52	9.52	9.52	9.52
Thickness	mm	0.36	0.36	0.36	0.36	0.36
Row		3	3	3	2	3
No. of Tubes/Row		10	10	10	10	10
Fin Material				Aluminum		•
Thickness	mm	0.115	0.115	0.115	0.115	0.115
Fin Pitch	No./inch	14	14	14	14	12
Fin Surface		X-Louvre-fin	X-Louvre-fin	X-Louvre-fin	X-Louvre-fin	X-Louvre-fin
Total Face Area	m ²	0.16	0.21	0.21	0.35	0.35
Fan			•	Sirocco	•	•
Type						
No. of/Unit		2	2	2	3	4
Fan motor				Direct On-Line Starting	g	•
Starting Method						
Rated Output	kW	0.085	0.085	0.115	0.15	0.20
Poles		4	4	4	4	4
Phase		Single-Phase	Single-Phase	Single-Phase	Single-Phase	Single-Phase
Insulation Class		E	E	E	E	E

Condenser

Models	Heat pum	p model	CU-W18BBP5	CU-W24BBP5	CU-W28BBP5 CU-W28BBP8	CU-W34BBP8	CU-W43BBP8					
	Cooling or	ly model	CU-V18BBP5	CU-V24BBP5	CU-V28BBP5	CU-V34BBP8	CU-V43BBP8					
				CU-V24BBP8	CU-V28BBP8							
Tube Mate	erial				Copper tube		•					
Outer Diar	meter	mm	9.52	9.52	9.52	9.52	9.52					
Thickness		mm	0.3	0.3	0.3	0.3	0.3					
Row			2	2	2	2	2					
No. of Tub	es/Row		34	34	34	46	46					
Fin Materia	al			Aluminum								
Thickness		mm	0.105	0.105	0.105	0.105	0.105					
Fin Pitch		No./inch	14	14	14	14	14					
Fin Surfac	e		X-Louvre-fin	X-Louvre-fin	X-Louvre-fin	X-Louvre-fin	X-Louvre-fin					
Total Face	e Area	m ²	0.61	0.61	0.61	0.82	1.05					
Fan												
Type					Propeller Fan							
No.of /Uni	t		1	1	1	2	2					
Fan Motor												
Starting M	ethod				Direct on-line Starting	g						
Rated Out	put	kW	0.05	0.055	0.055	0.055 X 2	0.055 X 2					
Poles			6	6	6	6	6					
Phase			Single-Phase	Single-Phase	Single-Phase	Single-Phase	Single-Phase					
Insulation	Class		E	E	E	Е	E					

15 CAPACITY AND POWER CONSUMPTION

■ PERFORMANCE DATA

COOLING PERFORMANCE

Model	Cooling capacities are based conditions.
CS-W18BD3P	● Indoor temp. 27°C D.B. 19°C W.B.
	Outdoor temp. 35°C D.B.
I D.UKVV	● Standard air volume 17 m³/min ● External Static Pressure (49Pa)

Ente	ring		Temperature Air Entering Condenser (°C D.B.)													
Ai	ir	25°C			30°C			35°C			40°C			43°C		
Tempe	rature	TC	SHC	IPT	TC	SHC	IPT	TC	SHC	IPT	TC	SHC	IPT	TC	SHC	IPT
D.B.	W.B.	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW
	17	5.21	3.49	1.61	5.00	3.45	1.70	4.71	3.34	1.83	4.35	3.18	1.97	4.05	3.03	2.06
23	19	5.50	2.91	1.70	5.33	2.93	1.80	5.05	2.88	1.94	4.71	2.78	2.09	4.42	2.69	2.19
	22	6.00	2.46	1.84	5.84	2.51	1.94	5.57	2.51	2.09	5.22	2.45	2.25	4.91	2.40	2.36
	17	5.14	4.06	1.60	4.94	4.00	1.70	4.66	3.87	1.83	4.32	3.67	1.96	4.05	3.52	2.05
25	19	5.50	3.58	1.70	5.31	3.56	1.81	5.03	3.47	1.94	4.68	3.32	2.09	4.41	3.22	2.18
	22	6.00	2.94	1.84	5.82	2.97	1.95	5.53	2.93	2.10	4.96	2.73	2.25	4.89	2.79	2.36
	17	5.08	4.83	1.59	4.89	4.74	1.70	4.61	4.61	1.82	4.29	4.29	1.95	4.06	4.06	2.04
27	19	5.51	4.19	1.70	5.30	4.13	1.81	5.00	4.00	1.95	4.65	3.81	2.08	4.40	3.70	2.18
	22	5.99	3.42	1.84	5.79	3.42	1.96	5.49	3.35	2.11	4.71	2.97	2.25	4.88	3.17	2.35
	17	5.07	4.82	1.58	4.89	4.74	1.68	4.62	4.62	1.80	4.32	4.32	1.92	4.11	4.11	1.99
29	19	5.50	5.06	1.69	5.30	4.98	1.80	5.01	4.81	1.92	4.69	4.59	2.05	4.45	4.45	2.13
	22	5.97	4.00	1.86	5.77	3.98	1.98	5.47	3.88	2.12	4.95	3.61	2.26	4.87	3.65	2.35
	17	5.06	4.81	1.58	4.89	4.74	1.67	4.63	4.63	1.78	4.34	4.34	1.90	4.14	4.14	1.96
32	19	5.49	5.22	1.69	5.30	5.14	1.79	5.02	5.02	1.90	4.71	4.71	2.03	4.49	4.49	2.10
	22	5.96	4.94	1.88	5.75	4.89	1.99	5.45	4.74	2.12	5.11	4.55	2.26	4.87	4.43	2.34

Model	Cooling capacities are based conditions.
CS-W24BD3P	■ Indoor temp. 27°C D.B. 19°C W.B.
Cooling capacity	Outdoor temp. 35°C D.B.
6.3kW	 Standard air volume 20 m³/min External Static Pressure (49Pa)

Ente	ring					Tem	perature	Air Ente	ering Co	ndenser	(°C D.E	3.)				
Ai	ir	25°C 30°C				35°C				40°C		43°C				
Tempe	rature	TC	SHC	IPT	TC	SHC	IPT	TC	SHC	IPT	TC	SHC	IPT	TC	SHC	IPT
D.B.	W.B.	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW
	17	6.56	4.39	2.14	6.30	4.35	2.26	5.93	4.21	2.44	5.48	4.00	2.63	5.10	3.82	2.70
23	19	6.93	3.67	2.27	6.71	3.69	2.40	6.37	3.63	2.58	5.94	3.50	2.78	5.57	3.40	2.87
	22	7.56	3.10	2.45	7.36	3.16	2.59	7.02	3.16	2.79	6.57	3.09	3.01	6.18	3.03	3.04
	17	6.48	5.12	2.13	6.23	5.05	2.26	5.87	4.87	2.43	5.44	4.63	2.61	5.10	4.44	2.70
25	19	6.93	4.51	2.27	6.69	4.48	2.41	6.33	4.37	2.59	5.90	4.19	2.78	5.55	4.06	2.87
	22	7.56	3.70	2.45	7.33	3.74	2.60	6.97	3.69	2.80	6.25	3.44	2.97	6.16	3.51	2.99
	17	6.40	6.08	2.12	6.16	5.97	2.26	5.81	5.81	2.43	5.40	5.40	2.60	5.11	5.11	2.69
27	19	6.94	5.28	2.27	6.68	5.21	2.42	6.30	5.04	2.60	5.86	4.80	2.78	5.54	4.66	2.87
	22	7.55	4.31	2.45	7.30	4.31	2.61	6.92	4.22	2.81	5.94	3.74	3.00	6.14	3.99	3.05
	17	6.39	6.07	2.11	6.16	5.97	2.24	5.83	5.83	2.40	5.44	5.44	2.56	5.17	5.17	2.64
29	19	6.93	6.37	2.26	6.68	6.28	2.40	6.32	6.07	2.56	5.91	5.79	2.73	5.61	5.61	2.83
	22	7.52	5.04	2.49	7.27	5.01	2.64	6.89	4.89	2.82	6.24	4.55	2.98	6.14	4.60	3.04
	17	6.38	6.06	2.10	6.16	5.97	2.23	5.84	5.84	2.37	5.47	5.47	2.53	5.22	5.22	2.62
32	19	6.92	6.57	2.25	6.68	6.48	2.38	6.33	6.33	2.53	5.94	5.94	2.70	5.66	5.66	2.80
	22	7.50	6.23	2.51	7.25	6.16	2.66	6.87	5.97	2.83	6.44	5.73	3.02	6.14	5.58	3.12

Model	Cooling capacities are based conditions.
CS-W28BD3P	● Indoor temp. 27°C D.B. 19°C W.B.
	Outdoor temp. 35°C D.B.
I / IKVV	● Standard air volume 25 m³/min ● External Static Pressure (49Pa)

Ente	ring					Temp	perature	Air Ente	ering Co	ndenser	(°C D.E	3.)					
А	ir	25°C				30°C			35°C			40°C			43°C		
Tempe	erature	TC	SHC	IPT	TC	SHC	IPT	TC	SHC	IPT	TC	SHC	IPT	TC	SHC	IPT	
D.B.	W.B.	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	
	17	7.39	4.95	2.29	7.10	4.90	2.42	6.68	4.74	2.60	6.18	4.51	2.81	5.74	4.31	2.92	
23	19	7.81	4.14	2.43	7.56	4.16	2.57	7.18	4.09	2.76	6.69	3.95	2.95	6.27	3.83	3.04	
	22	8.52	3.49	2.62	8.29	3.57	2.77	7.91	3.56	2.98	7.41	3.48	3.11	6.97	3.41	3.13	
	17	7.30	5.77	2.28	7.02	5.69	2.42	6.61	5.49	2.60	6.13	5.21	2.78	5.75	5.00	2.86	
25	19	7.81	5.08	2.43	7.54	5.05	2.58	7.14	4.93	2.77	6.65	4.72	2.94	6.26	4.57	3.02	
	22	8.52	4.17	2.62	8.26	4.21	2.78	7.86	4.16	2.99	7.05	3.88	3.01	6.95	3.96	3.04	
	17	7.21	6.85	2.27	6.94	6.73	2.42	6.55	6.55	2.60	6.09	6.09	2.74	5.76	5.76	2.81	
27	19	7.82	5.95	2.43	7.53	5.87	2.59	7.10	5.68	2.78	6.60	5.41	2.93	6.25	5.25	3.00	
	22	8.51	4.85	2.62	8.23	4.85	2.79	7.80	4.76	3.00	6.69	4.21	3.09	6.92	4.50	3.12	
	17	7.20	6.84	2.26	6.94	6.73	2.40	6.57	6.57	2.56	6.14	6.14	2.66	5.83	5.83	2.80	
29	19	7.81	7.18	2.41	7.53	7.08	2.56	7.12	6.84	2.74	6.66	6.52	2.85	6.32	6.32	3.00	
	22	8.48	5.68	2.66	8.19	5.65	2.82	7.76	5.51	3.02	7.03	5.13	3.02	6.92	5.19	3.16	
	17	7.19	6.83	2.25	6.94	6.73	2.38	6.58	6.58	2.54	6.17	6.17	2.61	5.88	5.88	2.80	
32	19	7.80	7.41	2.40	7.53	7.30	2.55	7.14	7.14	2.71	6.69	6.69	2.79	6.38	6.38	2.99	
	22	8.46	7.02	2.68	8.17	6.94	2.84	7.74	6.73	3.02	7.26	6.46	3.11	6.92	6.29	3.34	

Model	Cooling capacities are based conditions.
	● Indoor temp. 27°C D.B. 19°C W.B.
	Outdoor temp. 35°C D.B.
I IU.UKVV	● Standard air volume 35 m³/min ● External Static Pressure (49Pa)

Ente	ring		Temperature Air Entering Condenser (°C D.B.)													
Ai	Air 25°C				30°C			35°C			40°C			43°C		
Tempe	rature	TC	SHC	IPT	TC	SHC	IPT	TC	SHC	IPT	TC	SHC	IPT	TC	SHC	IPT
D.B.	W.B.	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW
	17	10.4	6.97	3.42	10.0	6.90	3.61	9.41	6.68	3.89	8.70	6.35	4.19	8.09	6.07	4.36
23	19	11.0	5.83	3.62	10.7	5.86	3.83	10.1	5.76	4.12	9.42	5.56	4.40	8.83	5.39	4.58
	22	12.0	4.92	3.91	11.7	5.02	4.14	11.1	5.02	4.45	10.4	4.90	4.75	9.8	4.81	4.80
	17	10.3	8.13	3.40	9.90	8.01	3.61	9.32	7.73	3.89	8.64	7.34	4.16	8.10	7.05	4.33
25	19	11.0	7.15	3.62	10.6	7.12	3.85	10.1	6.94	4.14	9.36	6.65	4.40	8.82	6.44	4.59
	22	12.0	5.88	3.91	11.6	5.93	4.15	11.1	5.86	4.47	9.9	5.46	4.68	9.80	5.58	4.72
	17	10.2	9.70	3.39	9.80	9.48	3.61	9.22	9.22	3.88	8.57	8.57	4.12	8.11	8.11	4.31
27	19	11.0	8.38	3.62	10.6	8.27	3.86	10.0	8.00	4.15	9.30	7.63	4.41	8.80	7.39	4.61
	22	12.0	6.83	3.91	11.6	6.84	4.17	11.0	6.70	4.48	9.42	5.94	4.76	9.8	6.34	4.80
	17	10.1	9.60	3.37	9.80	9.48	3.58	9.25	9.25	3.82	8.64	8.64	4.05	8.21	8.21	4.23
29	19	11.0	10.1	3.60	10.6	10.0	3.82	10.0	9.60	4.09	9.37	9.19	4.33	8.91	8.91	4.52
	22	11.9	8.00	3.97	11.5	7.96	4.21	10.9	7.76	4.50	9.90	7.23	4.77	9.7	7.31	4.89
	17	10.1	9.60	3.36	9.80	9.48	3.56	9.27	9.27	3.79	8.69	8.69	4.00	8.28	8.28	4.18
32	19	11.0	10.4	3.59	10.6	10.3	3.80	10.0	10.0	4.05	9.42	9.42	4.28	8.98	8.98	4.46
	22	11.9	9.9	4.00	11.5	9.8	4.24	10.9	9.48	4.52	10.2	9.10	4.77	9.7	8.86	4.98

Model	Cooling capacities are based conditions.
CS-W43BD3P	■ Indoor temp. 27°C D.B. 19°C W.B.
Cooling capacity	Outdoor temp. 35°C D.B.
12.5kW	● Standard air volume 40 m³/min ● External Static Pressure (49Pa)

Ente	ring					Temp	perature	Air Ente	ering Co	ndenser	(°C D.E	3.)				
A	ir	25°C			30°C			35°C			40°C			45°C		
Tempe	erature	TC	SHC	IPT	TC	SHC	IPT	TC	SHC	IPT	TC	SHC	IPT	TC	SHC	IPT
D.B.	W.B.	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW	kW
	17	13.0	8.72	4.22	12.5	8.63	4.46	11.8	8.35	4.80	10.9	7.94	5.17	10.1	7.58	5.38
23	19	13.7	7.28	4.47	13.3	7.32	4.73	12.6	7.20	5.09	11.8	6.95	5.48	11.0	6.74	5.64
	22	15.0	6.15	4.83	14.6	6.28	5.11	13.9	6.27	5.49	13.0	6.13	5.92	12.3	6.01	6.04
	17	12.9	10.2	4.20	12.4	10.0	4.46	11.6	9.7	4.79	10.8	9.18	5.15	10.1	8.81	5.35
25	19	13.8	8.94	4.47	13.3	8.90	4.74	12.6	8.67	5.10	11.7	8.31	5.48	11.0	8.05	5.66
	22	15.0	7.35	4.83	14.5	7.42	5.12	13.8	7.33	5.51	12.4	6.82	5.92	12.2	6.97	5.99
	17	12.7	12.1	4.18	12.2	11.9	4.46	11.5	11.5	4.79	10.7	10.7	5.12	10.1	10.1	5.32
27	19	13.8	10.5	4.47	13.3	10.3	4.76	12.5	10.0	5.12	11.6	9.53	5.47	11.0	9.24	5.68
	22	15.0	8.54	4.83	14.5	8.54	5.14	13.7	8.37	5.53	11.8	7.42	5.91	12.2	7.94	6.02
	17	12.7	12.0	4.16	12.2	11.9	4.41	11.6	11.6	4.72	10.8	10.8	5.04	10.3	10.3	5.22
29	19	13.7	12.6	4.44	13.3	12.5	4.72	12.5	12.0	5.04	11.7	11.5	5.38	11.1	11.1	5.57
	22	14.9	10.0	4.90	14.4	9.90	5.20	13.7	9.70	5.55	12.4	9.03	5.93	12.2	9.14	6.09
	17	12.7	12.0	4.14	12.2	11.9	4.39	11.6	11.6	4.67	10.9	10.9	4.98	10.3	10.3	5.15
32	19	13.7	13.0	4.43	13.3	12.9	4.69	12.6	12.6	4.99	11.8	11.8	5.32	11.2	11.2	5.50
	22	14.9	12.4	4.94	14.4	12.2	5.23	13.6	11.9	5.57	12.8	11.4	5.94	12.2	11.1	6.14

HEATING PERFORMANCE

Model	Heating capacities are based conditions
	■ Indoor temp. 20°C D.B.
	Outdoor temp. 7°C D.B. 6°C W.B.
	● Standard air volume 17 m³/min ● External Static Pressure (49Pa)

Inlet Air	Inlet Air					Outdoor Temperature (°C W.B.)										
External Static Pressure (Pa)	Entering Air	-6°C		0°C		6°C		12°C								
Air Volume (m³/min)	Dry Bulb (°C)	H.C.	IPT	H.C.	IPT	H.C.	IPT	H.C.	IPT							
	15	3.98	1.30	4.82	1.48	5.88	1.72	7.00	2.01							
49Pa 17m ³ /min	20	3.70	1.57	4.54	1.57	5.60	1.81	6.66	2.12							
	25	3.42	1.45	4.26	1.67	5.32	1.90	6.38	2.15							

Model	Heating capacities are based conditions
	● Indoor temp. 20°C D.B.
	Outdoor temp. 7°C D.B. 6°C W.B.
I / IKVV	 Standard air volume 20 m³/min External Static Pressure (49Pa)

Inlet Air	Inlet Air					Outdoor Temperature (°C W.B.)										
External Static Pressure (Pa)	Entering Air	-6	-6°C		0°C		6°C		°C							
Air Volume (m³/min)	Dry Bulb (°C)	H.C.	IPT	H.C.	IPT	H.C.	IPT	H.C.	IPT							
	15	5.04	1.86	6.11	2.12	7.46	2.45	8.88	2.86							
49Pa 20m ³ /min	20	4.69	2.24	5.75	2.24	7.10	2.58	8.45	3.02							
	25	4.33	2.06	5.40	2.37	6.75	2.71	8.09	3.08							

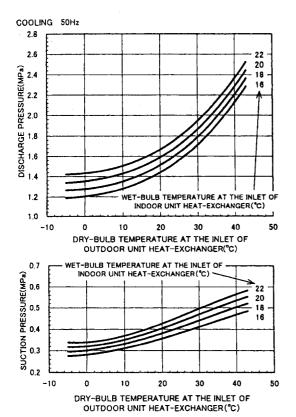
Model	Heating capacities are based conditions
	● Indoor temp. 20°C D.B.
	Outdoor temp. 7°C D.B. 6°C W.B.
I OUKVV	● Standard air volume 25 m³/min ● External Static Pressure (49Pa)

Inlet Air		Outdoor Temperature (°C W.B.)									
External Static Pressure (Pa) Air Volume (m³/min)	Entering Air Dry Bulb (°C)	-6°C		0°C		6°C		12°C			
		H.C.	IPT	H.C.	IPT	H.C.	IPT	H.C.	IPT		
49Pa 25m³/min	15	5.68	2.04	6.88	2.33	8.40	2.70	10.00	3.15		
	20	5.28	2.47	6.48	2.47	8.00	2.84	9.52	3.32		
	25	4.88	2.27	6.08	2.61	7.60	2.98	9.12	3.62		

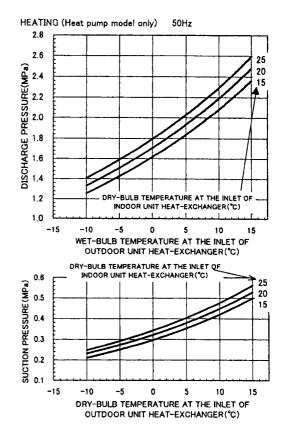
Model	Heating capacities are based conditions
	● Indoor temp. 20°C D.B.
I loating dapatity	Outdoor temp. 7°C D.B. 6°C W.B.
I II ZKVV	● Standard air volume 35 m³/min ● External Static Pressure (49Pa)

Inlet Air		Outdoor Temperature (°C W.B.)									
External Static Pressure (Pa) Air Volume (m³/min)	Entering Air Dry Bulb (°C)	-6°C		0°C		6°C		12°C			
		H.C.	IPT	H.C.	IPT	H.C.	IPT	H.C.	IPT		
49Pa 35m³/min	15	7.95	2.99	9.63	3.40	11.8	3.94	14.0	4.61		
	20	7.39	3.61	9.07	3.61	11.2	4.15	13.3	4.86		
	25	6.83	3.32	8.51	3.82	10.6	4.36	12.8	4.76		

Model	Heating capacities are based conditions
	● Indoor temp. 20°C D.B.
I loating dapatity	Outdoor temp. 7°C D.B. 6°C W.B.
1 14.UKVV	● Standard air volume 40 m³/min ● External Static Pressure (49Pa)

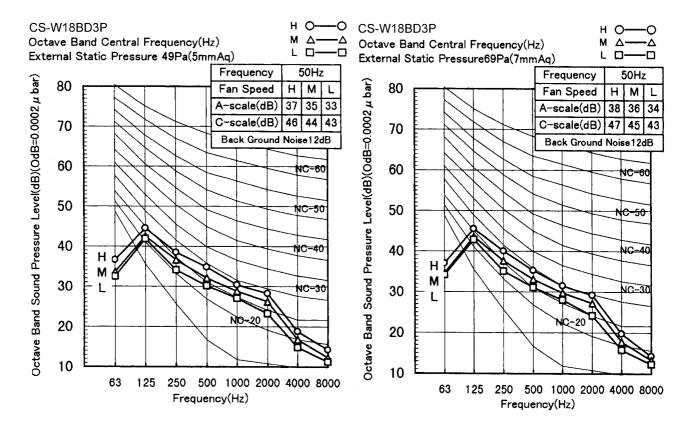

Inlet Air		Outdoor Temperature (°C W.B.)									
External Static Pressure (Pa)	Entering Air	-6°C		0°C		6°C		12°C			
Air Volume (m³/min)	Dry Bulb (°C)	H.C.	IPT	H.C.	IPT	H.C.	IPT	H.C.	IPT		
49Pa 40m³/min	15	9.9	3.69	12.0	4.20	14.7	4.86	17.5	5.68		
	20	9.24	4.45	11.3	4.45	14.0	5.12	16.7	5.99		
	25	8.54	4.10	10.6	4.71	13.3	5.38	16.0	6.10		

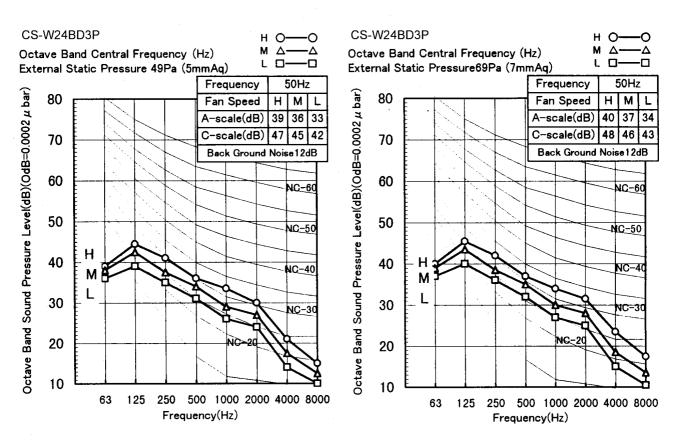
16 DISCHARGE AND SUCTION PRESSURE

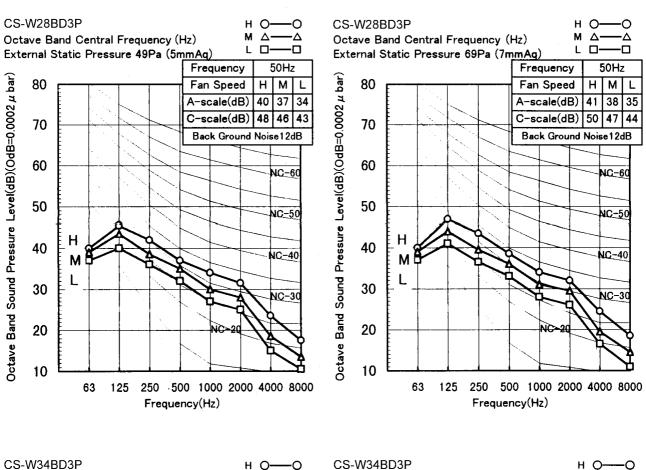

16.1. SATURATION TEMPERATURE OF DISCHARGE AND SUCTION PRESSURE

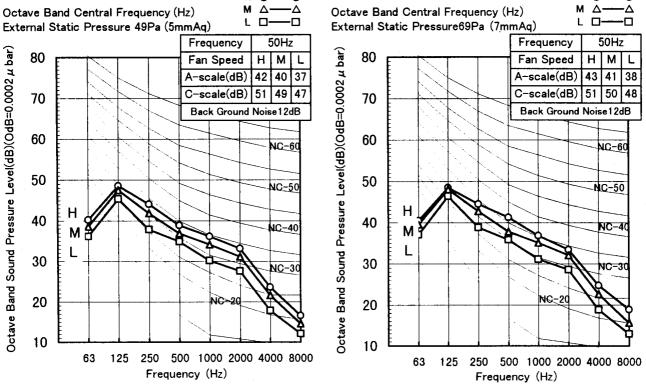
- Commonness TO ALL THE MODELS
- SATURATION TEMPERATURE OF DISCHARGE AND SUCTION PRESSURE

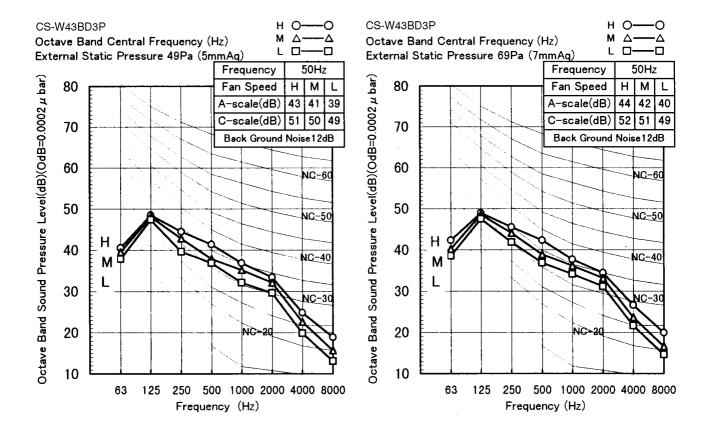
SATURATION OF DISCHARGE AND SUCTION PRESSURE

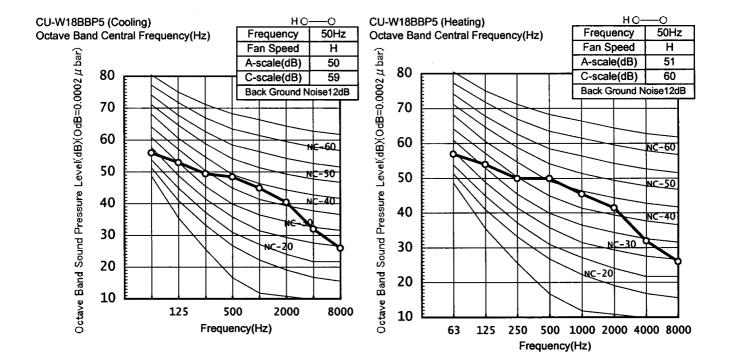


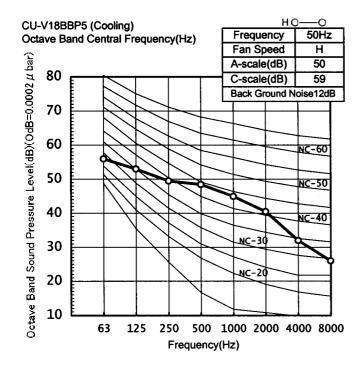

SATURATION OF DISCHARGE AND SUCTION PRESSURE

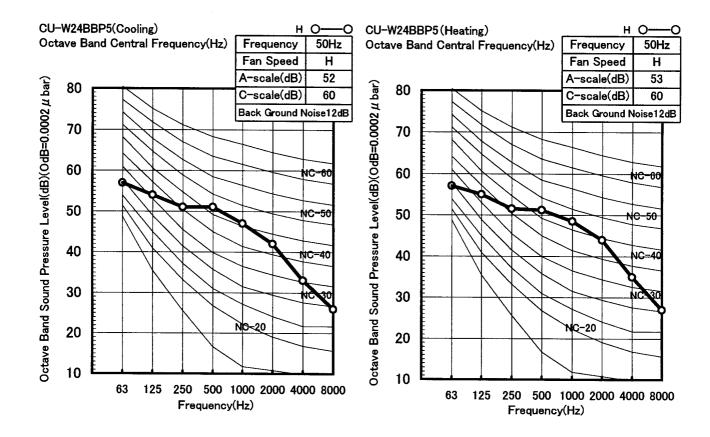


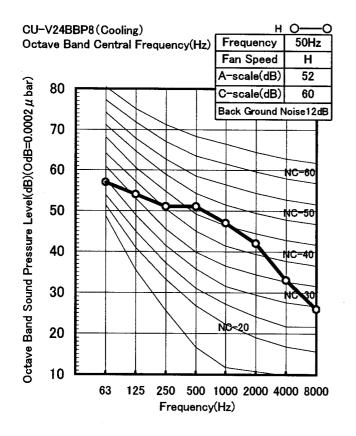

^{*} For intake temperature, consult the pressure - Enthalpy Table (R407C) at the end.

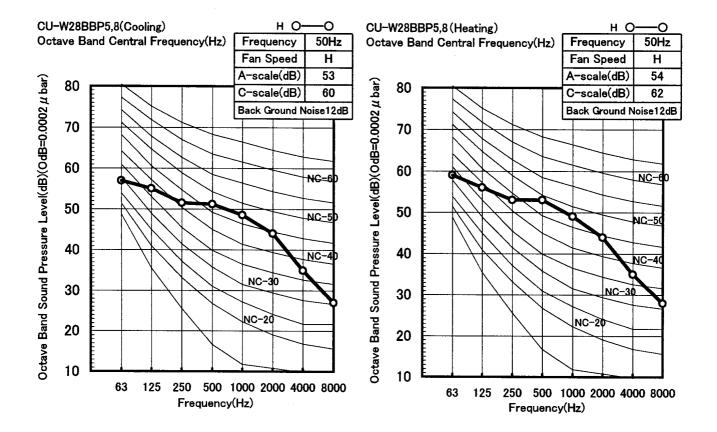

17 SOUND DATA

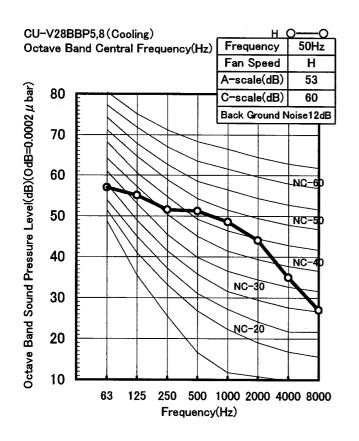


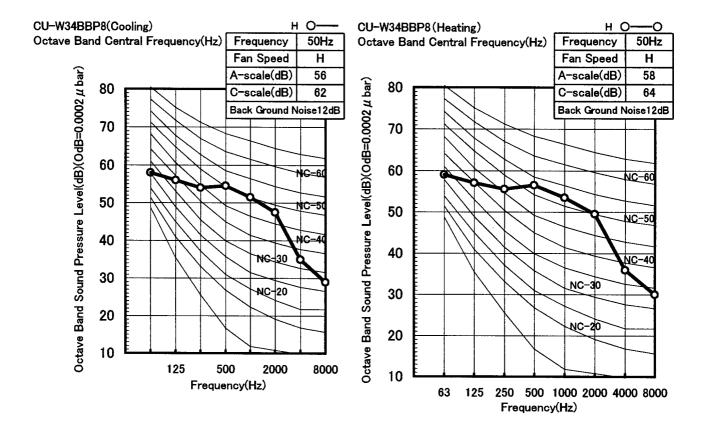


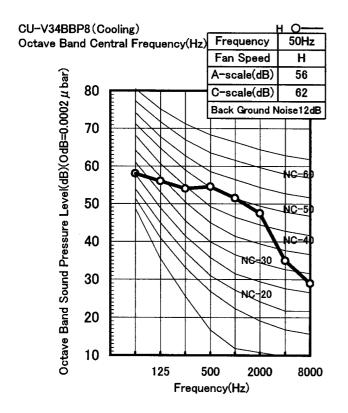


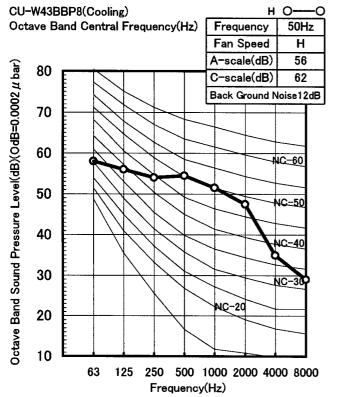


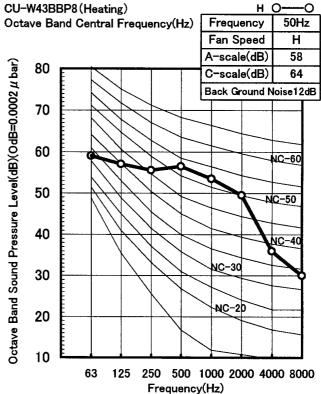


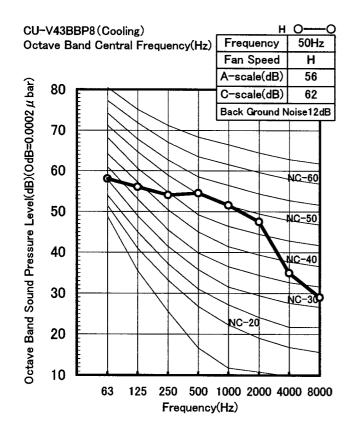


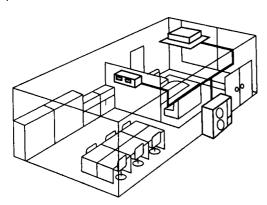












18 TWIN OPERATION

18.1. TWIN

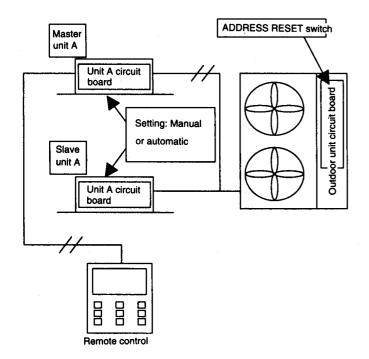
18.1.1. Operation

- Simultaneous air conditioning of wide spaces and corners is possible. Indoor units with different horsepower can even be used in combination.
- Master units and slave-units can be set automatically in twin systems. No address setting is necessary.
- Multiple indoor units can be operated simultaneously with a single remote control unit. Note that individual operation is not possible.

$\langle \cdot \rangle$) : Ouldoor unit capacity
	: Indoor unit capacity

(Figures indicate capacity ratios in combination.)

Outdoor	Simultaneous twin operation					
unit	Standard	Capacity difference				
34BB	(34BB) 18BD 18BD					
43BB	24BD 24BD	(43BB) 24BD 24BD				


(Twin operation setting)

- The master units and slave units are set automatically when the power is turned on. At this time, the indoor unit which is connected to the remote control unit becomes the master unit.

 (If automatic setting is not possible, carry out the settings manually.)
- No distinction is made between master units and slave units (slave unit 1) at the indoor or remote control.
- Install the remote control unit to the master unit. (It cannot be connected to slave units.)
 If indoor unit models with louvres and models without louvres have been connected together, use an indoor unit with louvres as the master unit.
- The remote control thermostat can also be set.
- Optional circuit boards can only be installed to the master unit.
- Setting the master unit and slave units can also be carried out manually by using DIP switches. However, manual settings will always take priority. If you have made manual settings but would like to return to using automatic settings, set all slave unit DIP switches (refer to the table below) to the OFF position, and then press the ADDRESS RESET switch on the outdoor unit (SW3 on the outdoor unit printed circuit board).

(Do not mix manual settings and automatic settings.)

[B	Maater unit	Slave unit
Manual setting	※It is not necessary to operate any switches on the master unit. The unit connected to the remote control will become the master unit.	OFF 12 3 4 5 6 7 8 Set No. 8 to ON. All other switches can be ignored. (No. 7 is already set to ON at the time of shoment.)

Master unit A Slave unit A

Master and slave unit setting should basically be carried out automatically.

 Setting occurs when the power is turned on.

(When power for indoor and outdoor)
units is turned on.

- Remote control is connected to the master unit.
- Self-diagnosis displays are possible for slave units.
- If setting errors occur because of procedural mistakes or power supply quality problems, the ADDRESS RESET switch function can be used.

Automatic address setting for twin system

Procedure: Turn on the power supply for the indoor and outdoor units.

Operation: Automatic address setting will start 10 to 30 seconds after the power supply is turned on, and will be completed after about 1

minute.

If the power supplies for the indoor unit and outdoor unit cannot be turned on at the same time, turn on the power supply for the outdoor unit, the indoor unit which is connected to the remote control, and then the other indoor units in that order.

If the order of turning on the power supply is incorrect, the master unit setting may overlap. In such a case, turn on the power supplies for all units in the correct order as given above, or carry out a twin/triple automatic address reset (press dip switch 3 on the outdoor unit continuously for 4 seconds or longer).

- The indoor unit which is connected to the remote control unit (receptor) will have priority for becoming the master unit.
- The master unit thermostat will be used as the indoor temperature thermostat. If the master unit thermostat is turned on, the slave unit thermostats cannot be adjusted even if they happen to be on.
- DIP switch settings take priority in the setting of twin and triple addresses.
- If address setting using the DIP switches is carried out after automatic address setting has been carried out, use DIP switch No.3 on the outdoor unit to carry out automatic address resetting.
- If you would like to designate a particular indoor unit as the master unit because no master unit has been set, use the DIP switches on the slave units to make the setting.

If automatic address setting is carried out once and then the slave unit addresses are set, the addresses will then be stored inside the EEPROM. Thus it is not necessary to repeat automatic address setting if the power is turned off and back on again.

DIP switch settings for twin slave unit addresses

Procedure: Turn off the power supply, and then set DIP switch 1-8 to ON.

The unit will become slave unit 1.

Turn on the power supply.

Operation: The unit will operate as slave unit 1. Automatic address setting is not carried out at this time.

If the setting can be made while the power is still turned on, it is easier to mis-combine the setting with group settings. So, the setting be made better while the power is turned off.

- Only slave unit addresses can be set in this way. Master unit setting is not possible.
- If you make the DIP switch settings after the power has been turned back on, carry out twin/triple automatic address resetting.
- Be sure to set DIP switch 1-8 to ON when setting twin/triple addresses. If DIP switch 1-1 is set to ON without setting 1-8 to ON also, group addresses will be set instead, and the remote control open circuit error code (F26) will be displayed.

Automatic address resetting for twin systems

Function

• This clears the current twin addresses which have been set automatically, and causes automatic twin address setting to be carried out once more.

Procedure: Press the ADDRESS RESET switch SW3 (push button switch) on the outdoor unit circuit board continuously until LEDs 2 to 8 on

the outdoor unit circuit board are all illuminated (takes approx. 3.5 seconds).

Operation: The outdoor unit will reset the addresses for the indoor units which it is connected to, and will send an instruction to carry out

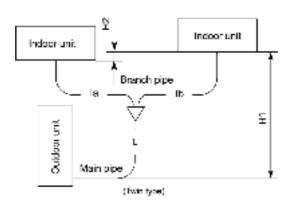
automatic address setting again. If the indoor unit DIP switches have not been manually set for twin address setting, the indoor

units receive this command and they then clear their existing settings and carry out automatic address setting.

If an indoor unit has had its address set by the DIP switch (DIP switch 1-8 is ON), or if the remote control unit is connected to one of the indoor units, then the addresses for those indoor units cannot be reset.

• The indoor units will not run for approximately 1 minute while automatic twin address resetting is being carried out.

• Do not turn off the power supply for at least 1 minute after automatic twin address resetting has been carried out.

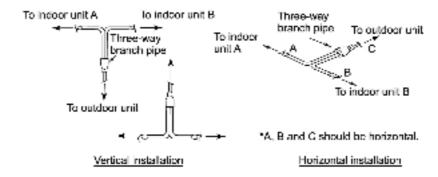

18.2. Piping connections

• The following table shows the pipe diameters for a twin-type system.

Outdoor unit r	main pipe diameter (mm)				Indoor unit combinations			
34BB		Indoor unit capacity (HP)		18BD3	18BD3			
Liquid side:	ø 9.52	Branch pipe	Liquid side	ø 6.35	ø 6.35			
Gas side:	ø 15.88	diameter	Gas side	ø 12.7	ø 12.7			
	43BB	Indoor unit capacity (HP)		24BD3	24BD3	18BD3	28BD3	
Liquid side:	ø 9.52	Branch pipe	Liquid side	ø 6.35	ø 6.35	ø 6.35	ø 9.52	
Gas side:	ø 19.05	diameter	Gas side	ø 15.88	ø 15.88	ø 12.7	ø 15.88	

• The following table shows the equivalent pipe lengths and height differences for twin systems

Equivalent length	L + la + lb				L + la + lb Within				Within 50 m
Branch pipe diameter	la, lb				Within 15 m				
Branch pipe difference	la - lb				Within 10 m				
Height difference	H1 Within 30 m Height difference between indoor units H2		Within 1 m						



^{*} The branch pipe should be horizontal to or perpendicular to the indeer unit.

NOTE:

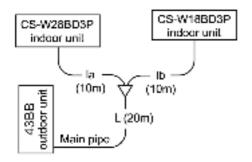
- 1. Use the main pipe to gain any rise or fall required for the pipes.
- 2. The number of bends should be 8 or less in a single system (L + la, L + lb), and 15 or less overall.
- 3. Branch pipes should be positioned horizontally.

• The branch pipe should be horizontal to or perpendicular to the indoor unit.

●Installing branch pipes

	Outdoor unit side (outer	diameter)	Branch pipe (inner diameter)	Indoor unit side (ou	ıter diameter)
Gas	Gas \$\phi 15.88 \\ \text{Maptor socket} \phi 15.88 \\ \text{Check of 15.88} \\ \text{Check of 15.88} \\ \text{Check of 15.88}	ø 12.7			
side			Adaptor socket Ø 15.88	φ 15.88	Cut
Side	φ 19.05	Cut	(Check all of the \$12.7 \$12.7 \$19.05	ø 19.05	Adaptor socket
Liquid	φ9.52		ø 9.52	φ 6.35	
side	ψ 9.52		♦9.52 ♦6.35	φ9.52	Cut

18.3. Refrigerant charging

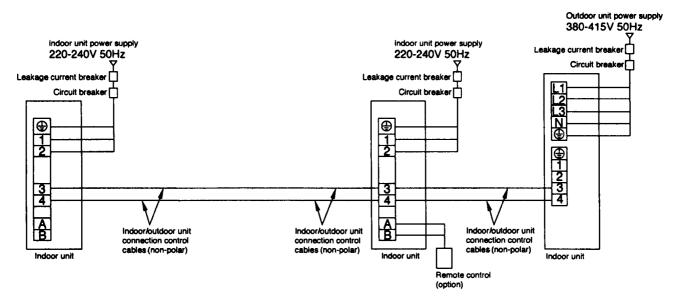

• For twin systems

The pipe length is the total of the branch pipe (L) and the junction pipes ($Ia \rightarrow t Ib \rightarrow t Ic$ in order from the thickest diameter). At the point where the pipe length exceeds 30 m, determine the amount of refrigerant for the remaining liquid-side pipe diameters and pipe lengths from the following table in order to charge the system.

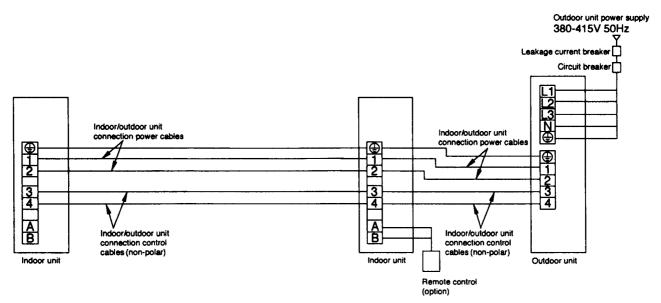
Liquid-side pipe diameter	ø6.35	ø9.52
Additional charging amount (kg/m)	0.02	0.05

(Twin type)

Example 1: For 43BB outdoor unit with an equivalent pipe length of 40 m

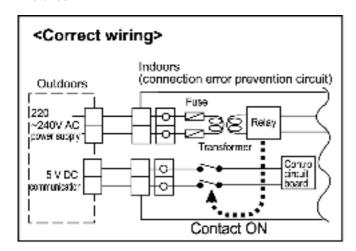


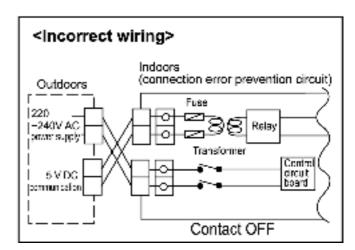
		Liquid pipe diameter	Equivalent length	Additional charging amount for each pipe (kg)
Main pipe (L) ø9.52		20m	Not needed if within 30m	
	(la)	ø6.35	10m	Not needed if within 30m
Main pipe	(lb)	ø6.35	10m	If exceeds 30m, 10m × 0.02 = 0.2
			40m	Total 0.2 kg


78

18.4. Wiring

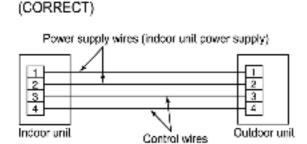
When both indoor and outdoor unit draw power (Example: 3 Phase power supply model)

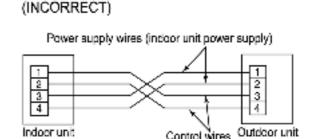



When only the outdoor unit draws power

19 WIRING MISTAKE PREVENTION

Improved quality of installation work through adoption of an "Connection error prevention" circuit which prevents wiring mistakes





Connection errors with the control wires and the power supply wires will not only contribute to burning-out of the control circuit board, but can also cause large-scale working losses and affect reliability. If a circuit board with a "Connection error prevention" circuit is used, the relay will not operate if the wires have been connected incorrectly, so that current will not flow to the control circuit board. This is designed principally to eliminate human error at the installation site.

Prevention of connection errors

These units are equipped with connection error prevention circuits. If the units do not operate, it is possible that the connection error prevention circuits have operated. In such cases, check that the power supply wires (connected to terminals 1 and 2 and the control wires (connected to terminals 3 and 4) are connected correctly. If they are connected incorrectly, connect them correctly. Normal operation should then commence.

• Do not short the remote control wires to each other. (The protection circuit will be activated and the units will not operate.) Once the cause of the short is eliminated, normal operation will then be possible.

NOTE:

- Wait one minute after turning on the indoor unit power supply before operating the remote control.
- If nothing at all appears in the remote control LCD, check the power supply for the indoor unit.
 Refer to "TROUBLE SHOOTING".

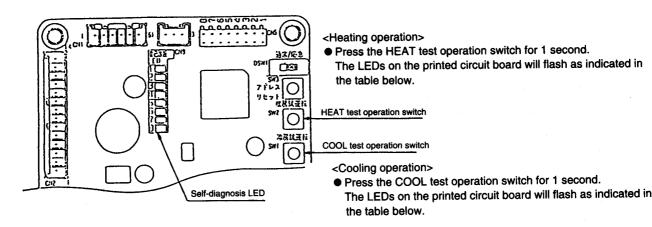
NOTE:

Never do any of the following, as doing so may damage the printed circuit board.

- Do not connect anything except a relay to the timer input or fan speed output (connector CNT1 on printed circuit board).
- Do not connect U-NET transmission wires to terminals 3 and 4 of the indoor and outdoor units. (*1)
- Do not connect U-NET transmission wires to terminals A and B of the remote control.
 (*1) U-NET transmission wires are the communication wires used for the central controller.

20 TEST OPERATION AND SELF DIAGNOSIS

20.1. Test operation


- Always be sure to use a properly-insulated tool to operate the switch on the circuit board. (Do not use your finger or a metallic object).
- Never turn on the power supply until all installation work has been completed.
- Turn on the circuit breaker before test operation extends past 6 hours.
 - (The crankcase heater will become energized, which will warm the compressor and prevent liquid compression.)
- For three-phase models, check that the phase is not reversed.

(If the phase is reversed, the LED on the printed circuit board will flash.)

- Check that the voltage is 198 V or higher when starting the unit. (The unit will not operate if the voltage is less than 198V.)
- Carry out test operation for 5 minutes or more using the remote control or the switch on the outdoor unit printed circuit board.
- Always carry out cooling first during test operation, even during the warm season.
 (If heating is carried out first, problems with operation of the

20.2. Test operation from the outdoor unit

(Outdoor unit printed circuit board)

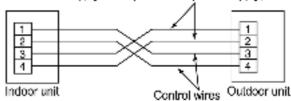
During outdoor unit emergency operation or test operation, the LEDs on the printed circuit board will flash.

	LEI	LEDs on outdoor unit printed circuit board						
	1 FD2	ED2 IED3 IED4 IED5 IED5 IED7 IED						
Emergency operation display			*	፨	鉄			
Cooling test operation from outdoor unit	1,5	¥	*					
Heating test operation from outdoor unit					*	35	*	

To cancel test operation, press the TEST or RUN button once more while test operation is being carried out.

(Test operation will stop automatically after 30 minutes have passed.)

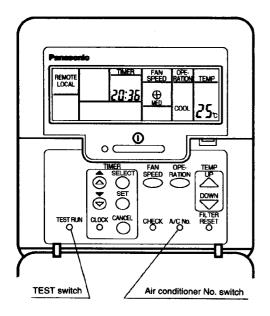
NOTE:

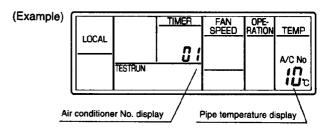

1. These units are equipped with connection error prevention circuits. If the units do not operate, it is possible that the connection error prevention circuits have operated. In such cases, check that the drive wires (connected to terminals [1] and [2]) and the control wires (connected to terminals [3] and [4]) are connected correctly. If they are connected incorrectly, connect them correctly. Normal operation should then commence.

(CORRECT)

compressor will result.)

(INCORRECT)

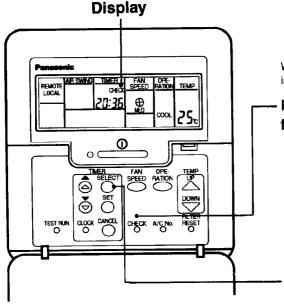

Power supply wires (indoor unit power supply)


Do not short the remote control unit wires to each other.(The protection circuit will be activated and the units will not operate.)

Once the cause of the short is eliminated, normal operation will then be possible.

20.3. Test operation using the wired remote control

- Check that "COOL" is displayed on the operation mode display, and then press the RUN switch to start test operation.
- Within 1 minute of pressing the RUN switch, press the TEST RUN switch.
- The pipe temperature (gas pipe) will then be displayed in the temperature setting display of the remote control.


- During group control, the number appearing in the timer display will change each time the air conditioner No. switch is pressed, and the pipe temperature for the indoor unit corresponding to the number displayed will appear in the temperature setting display.
- Check that the temperature in the pipe temperature display starts dropping after operation has been continuing for some time.

(The temperature will increase during heating operation.)


- The wired remote control display and the self-diagnosis LEDs (red) on the outdoor unit printed circuit board indicate where the abnormality has occurred.
- Recalling the error display

<Air conditioner No.>

No. switch.

• The air conditioner No. "01" appears during normal installation and use. When using group control, a different number may appear. The air conditioner No. can be displayed by pressing the air conditioner (Example)

When an abnormality occurs at this unit, "CHECK" flashes in the display.

Press the CHECK switch while the display is flashing.

(Example)

LOCAL	AIR SWING	<u>TIMER</u> CHECK	FAN SPEED	OPE- RATION	TEMP
		F 15	-		A/C No
					i ic

The timer display will change and an error code from F15 to F49 will appear in place of the time. (The temperature setting display will also change to show the air conditioner No.)

Press the TIMER ON/OFF switch while the error is displayed.

(Example)

LOCAL	AIR SWING	TIMER CHECK	FAN SPEED	OPE- RATION	TEMP
		- 0 1			A/C No

The F15 - F49 display will change to the detail display.

- After checking the error display and the detail display, refer to the self-diagnosis error code table on the following page and check the location of the problem.
- If the problem is repaired and operation returns to normal, the CHECK display on the remote control will put out, but the self-diagnosis LED will remain illuminated until operation starts again.

How to display the past error message

If the "CHECK" display on the wired remote control is not flashing, press the CHECK button continuously for 5 seconds or more to display the problem details for the last problem or the problem before that. You can then switch between the displays for the previous problem and the problem before that by pressing the TIMER, FORWARD or BACK buttons.

(Last problem display: 1F15 - 1F49

Second-last problem display: 2F15 - 2F49)

Press the CHECK button once more to return to the normal display.

(Example of last problem display)

	AIR SWING	TIMER	FAN	OPE-	TEMP
LOCAL	1	CHECK	SPEED	RATION	_IEMP
		!F !S			A/C No
ŀ		<u> </u>		'	n i
]				ii ic

An error code from 1F15 to 1F49 will be displayed.

(The temperature setting display will also change to show the air conditioner No.)

(Example)

) [LOCAL	AIR SWING	TIMER CHECK	FAN SPEED	OPE- RATION	TEMP
			<u> </u>			A/C No

If the TIMER ON/OFF switch is pressed while the error code from 1F15 to 1F49 is being displayed, the display screen will change to show the details of the last problem display.

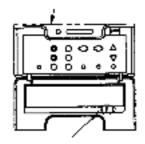
(If 2F15 to 2F49 is being displayed, the details of the second-last problem display will appear.)

- XX: Flashing : :: Illuminated Blank: Off

	brol display		19661 13	uchia bi			#-diagnosis LED (red)		redi	Error display
	red	leten vik								(Check location)
mor display	Detail display	LED2	LED2	LED3	LED4	LED5	TEDS	LED?	LED	io ear standing
F17	− 01	₩	✡	禁			≎	(362)	(362)	Option problem Option connection ferminals
F20	01	袋	ζţ		!	$\dot{\nabla}$		(#2)	(6)2}	Indeer temperature the mister problem Indeel temperature the risker had on a redoor unit connector CR4
	-02	ψ	₩		φ	₩		(%2)	(362)	Remote contact thermalar problem Remote contact thermalar
F21	− 01	ఘ		≎		≎	L	(#2)	(#2)	Pipe temperature thereunter problem (Indoor unit cide) Pipe temperature increasion logo vere or indoor unit corregion Chil
F25	01	₽			ψ			(62)	(82)	Centralised control address overlap proteins Check settings for optional cardinated control card il board address awtor
F26	-01	₽		ఘ				(#2)	(92)	Remittle control transmission wire open circuit problem Permitte control unit oxide and connection terminals
	- 02	፨	尊					(#2)	(#2)	Remote control transmission problem Check the transmission wave pattorn
F27	-01	华		ψ				≎		Indoor/outdoor unit registration where open circuit problem Indoor/outdoor unit or needed and connection term unit, or indoor unit and author unit power supplie
	-02	≎	≎					芷		Indov/turbion until in remission problem Check the transmission wave pattern.
	01	≎		☆		₹¦\$ 	Ϋ́	(#2)	(#2)	Informusi setting problem Abnormal setting of the ristor p. c. board.
F29	-02	<i>‡</i>	ψ. 			φ	♡	(8 2)	(3 2)	Index uns setting process. Absorbel Setting of the Index p. c. board.
	-12	₽	₽		≎	✡	於	(#2)	(2 2)	Plenate control unit serting problem Abnormal sating of the remote control.
	-02	≎	÷		#		苁	z		Negative of open phase downr supply Check the main power supply terminal based connections, and random the main power supply phase.
F30	-06	₹Ş.		ņ	¢		₽	간		Poor power suggly connector, or distorted writings wave pattern Check the main power supply territial board connections, and choosing gover supply were possess. Pleas power supply connector
	-07	÷	≎	≎	≎		☆	33; 		Check Inwesting over supply lessified board connections. High pressure carlett
F31	-02	草	14,	₩			# 55	☆ -	_	Retrigent to eyelen. Consucting of the heat rectation. If non-current and Compressor events in proposition.
F33	-01 02	☆	章 章	ş.l.			# #	¤		Open preso or lock in compressor, or blown men, cower supply 1, se Compressor discharge temperature protection
	02 41	# #	<u> </u>	χį		÷Q.	-;;;	☼☆		Frout contigue Compressor discharge lamperature thermistor problem
F40	 	~ ☆	125	₹ \$		な	<u> </u>	.≅. \$		Clearly being temperature them been lead wire, dubbur unit connector CNZ, or relay connector. Heart enotypigor public comparature (from stor problem KO, bloor units)
	-02	*	7,7	-0.5	 ₩	<u>~</u> ☆		<i>*</i>	,	Host scalarge outst expension thermal read was, purchase on compage Crist, or realy collects. High-pressure serian open circuit problem
F41	-03	 \$		¢	<u> </u>	~~ -;;;		<u>π</u>	-	High-pressure switch lead wire, outstoor unit connoctor CN2, or relay connector Healing pressure switch open arcs à prodiom
F42	-01	÷	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	 ∰		**	_	≎		Heeling pressure switch load wire, outdoor und connector CNS, or miny connector Current detector according compressor current problem.
	-01	**		<u>.</u> ;			♦	☆.		Outdoor will content of CR2, compensor minute protection system equation or bloom man goes supply? Outdoor unit, setting prote on: Abroprial setting of the numboo µ c bound.
F49	-02	#	-45		_	÷.	亞	ψ		Cuidor unit orting probers Abromal miting of the autopo pur board

If more than one error occurs between the Indoor and outdoor units, the problem display on the remote control may not match the LED display on the outdoor unit printed circuit board. In such cases, check both locations and remove the causes of the problems.

	LED7	LEDB	Unit display for twin/triple system
(+2)			Master unit error
(42)			Slave unit 1 error
		()	Slave unit 2 error


 The LED1 (green) illuminates to indicate that the microprocessor on the microprocessor circuit board is operating normally.
 If the LED is switched off or is flashing irregularly, check the power supply, and turn if off and then back on again.

21 SETTING OF SAVE ENERGY AND THERMISTOR SWITCH

21.1. Energy save setting

Open the cover remote control unit and confirm the presence of the [RP1] marking. Energy save setting method should be different for with [RP1] marking and without [RP1] marking.

There is RP1_ marking

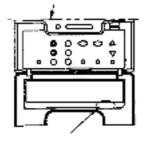
- Upper and lower fmils can be set for the setting temperature, during cooling and heating operation.
 (Energy save setting)
- (1) While operation is stopped , press the UP and DOWN switches simultaneously.
- (2) "0" (zero) will flash in the clock display at this time , so press the RESERVE switch.
- (3) To set an upper limit (Selting a temperature above the energy save temperature will not be possible.) Press the OPERATION MODE switch unk HEAT is displayed.

Press the UP or DOWN switch to set the temperature.

Press the RESERVE switch.

Example: If the heating display is set to 28°C - setting the temperature to higher than 26°C will not be possible.

(4) To set a lower limit (Setting a temperature below the energy save temperature will not be possible.) Press the OPERATION MODE switch unit COOL is displayed.


Press the UP or DOWN switch to set the temperature

Press the RESERVE switch.

Example: If the cooling display is set to 22°C , setting the temperature to lower than 22°C will not be possible.

(5) If the CLEAR switch is pressed during steps (3) or (4) above , the energy save setting will be cleared. ★Press the RESERVE switch or the CLEAR switch to return to normal operation mode after making an energy save setting in steps (3) to (5).

Remote control unit

There is not * RP1, marking.

- Upper and lower limits can be set for the setting temperature during cooling and heating operation.
 (Energy save setting)
- (1) White operation is slopped , press the UP and DOWN switches simultaneously
- (2) To set an upper limit (Setting a temperature above the energy save temperature will not be possible.) Press the OPERATION MODE switch unit HEAT is displayed.

Press the UP or DOWN switch to set the temperature.

Press the RESERVE switch.

Example If the heating display is set to 28°C , setting the temperature to higher than 26°C will not be possible.

(3) To set a lower limit (Setting a temperature below the energy save temperature will not be possible.) Press the OPERATION MODE switch unit COOL is displayed.

Press the UP or DOWN switch to set the temperature.

Press the RESERVE switch.

Example.If the cooling display is set to 22°C , setting the temperature to lower than 22°C will not be possible.

- (4) If the CLEAR switch is pressed during steps (2) or (3) above , the energy save setting will be cleared.
- ★Press the RESERVE switch or the CLEAR switch to return to normal operation mode after making an energy save setting in steps (2) to (4).

22 GROUP CONTROL

1 Setting group for 1 remote control unit

- When using a remote control thermostat, the thermostat setting is used for all indoor units in the group.
- During group control, up to a maximum of 16 indoor units can be connected. (Do not mix heat pump units and cooling only units.)
- Do not mix manual settings and automatic settings. (Manual settings take priority.)
- The master unit and slave units can all be centrally controlled during group control.

Automatic setting for group control

• If the power supplies for indoor units which are connected are turned on simultaneously, the indoor unit numbers will be determined automatically after approximately 1 minute. (DIP switch settings are not necessary.)

NOTE:

- Correct wiring connections are basic requirements for automatic setting. If the wires are connected incorrectly when the power is turned on, the settings will not be made correctly and operation will not be possible.
- When address numbers are set automatically, you will not know which address number corresponds to which indoor unit.
- Do not turn off the power supply for at least 1 minute during automatic address setting, otherwise the settings will not be made correctly.

(Manual setting for group control)

	Indoor unit No.	1	2	3	4	5	6	7	8
Manual	DIP switch (DSW1) Setting on Indoor unit Printed circuit Board Air conditioner No.setting	OFF ON 1 2 3 4 5 8 7 8 8 7 8 80 80 80 80 80 80 80 80 80 80 80 80 8	OFF ON 1 2 2 2 4 4 5 7 7 5 8 1 x ON	OFF ON 1 2 3 4 5 6 7 7 8 2 bi ON	CFF ON 1 2 3 4 5 8 7 9 1 and 2 and CN	OFF CN 1 2 3 5 5 7 9 3 MON	OFF CN 1 2 2 3 4 4 5 6 6 7 7 6 9 1 and 2 are CN	OFF CN 1 1 2 3 4 4 5 6 6 7 7 9 9 2 and \$ are \$ 9 \$ 2 \$ are \$ 9 \$ 2 \$ are \$ 9 \$ \$ 2 \$ are \$ 9	OFF ON 1 2 2 3 4 4 5 5 6 6 6 7 7 8 1 2 2 1 3 3 re ON 2 3 4 6 5 7 8 1 2 2 1 3 3 re ON 2 3 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Setting	Indoor unit No.	9	10	11	12	13	14	15	16
	DIP switch (DSW1) Setting on Indoor unit Printed circuit Board Air conditioner No.setling	OFF ON 1 2 3 5 6 6 7 8 445 ON	OFF ON 1 2 3 5 6 7 8 1 and 4 are CN	CFF ON 1 2 3 5 6 6 7 8 2 and 4 are CN	OFF ON 1 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	OFF ON 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	OFF CN 1 2 3 4 6 7 8 1,3and 4 are 0k	OFF ON 1 2 2 5 4 6 6 7 7 8 2 3 3 3 3 2 4 are Oh	OFF ON 1 2 2 3 4 4 5 6 7 7 3 1,2,3,4 are ON

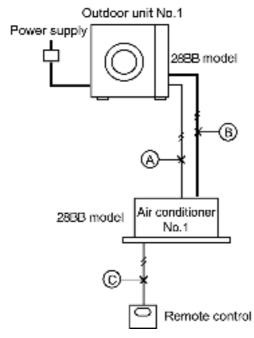
Automatic address resetting for group control

After setting DIP switches 1 to 4 to OFF and stop operation. Then press the "AIR SWING AUTO", "OPERATION MODE" and "Air conditioner No." switches simultaneously. Then addresses will be momentarily reset, and then automatic address setting will be carried out once more.

Switching the thermistor

- The temperature detection thermistor used for detecting the air temperature and changing between COOL and HEAT operation can be switched between the thermistor at the indoor unit and the thermistor at the remote control unit box. However, do not switch to the remote control unit thermistor if using two remote control units.
- 1. While operation is stopped, press and hold the STOP/RUN switch, and then press the UP and DOWN switches together.
- 2. "DO" or "01" will appear in the time display.
- 3. Press the FORWARD or BACK timer switches to switch the display between "00" and "01 ". "00" ... Indoor unit setting (factory default) "01" ... Remote control unit setting
- 4. Press the RESERVE switch. (Be sure to press the RESERVE switch so that normal operation mode can be resumed.)
- Repeat the procedure in steps (1) to (4) to change the setting again.

23 TROUBLE SHOOTING


If test operation does not proceed correctly

Carry out test operation after approximately 6 hours have passed since the power was turned on (crankcase heater is energized). If operation is started by using the remote control within 1 minute of turning on the power, the outdoor unit settings will not be made correctly and correct operation will not be possible.

If the following symptoms occur after turning on the power, check the wiring connections once more.

• For standard installation

(System example)

 The main power is turned on while the indoor-outdoor transmission wires are not connected (open circuit at section A)

Symptom:

Remote control unit . . . "CHECK" flashes

NOTE:

Indoor unit . . . LED2 on printed circuit board flashes Outdoor unit . . . LED3 and LED7 on printed circuit board flash

2. The main power is turned on while the indoor-outdoor power supply wires are not connected (open circuit at section B)

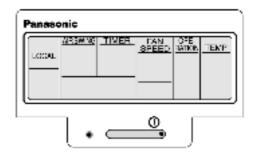
Symptom:

Remote control unit . . . Display of "No power supply" **NOTE:**

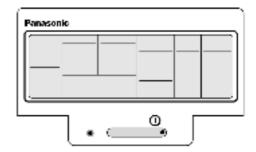
Indoor unit . . . No display

Outdoor unit . . . LED3 and LED7 on printed circuit board flash

 The main power is turned on while the remote control unit connection cord is not connected (open circuit at section C)


Symptom:

Remote control unit . . . Display of "No power supply"

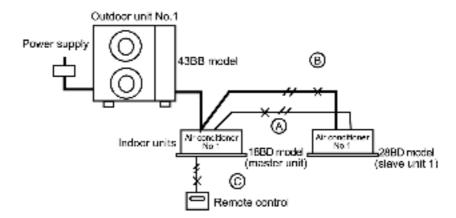

Indoor unit . . . LED1 on printed circuit board stays illuminated

Outdoor unit . . . LED1 on printed circuit board stays illuminated

(When remote control display shows "Power supply")

(When remote control display shows "No power supply")

Remedy


- 1. Turn off the main power.
 - 1
- 2. Connect the disconnected wire correctly.
 - \downarrow
- 3. Turn the main power back on.
 - \downarrow
- After 1 minute, start operation using the remote control. (Indoor unit . . . Operation will start according to the remote control setting.)
 - (Outdoor unit . . . Operation will start after 3-5 minutes.)

NOTE:

The "CHECK" display on the remote control and the flashing of LEDs on the printed circuit boards will not occur immediately. They will appear 3-6 minutes after the main power is turned on.

During twin operation

(System example)

 The main power is turned on while the transmission wires between the indoor unit(s) are not connected (open circuit at section A)

Symptom:

Nothing abnormal appears on the remote control display. If operation is then started in this condition, the combination of the 43BB outdoor unit and the 40U indoor unit (master unit) will cause abnormal operation to occur.

J

If operation continues, an abnormality will occur on the refrigeration cycle and operation will stop.

- Remote control . . . "CHECK" flashes
- Indoor unit (master) . . . The LEDs on the printed circuit board flash and operation stops
- Indoor unit (slave) . . . LED1 on the printed circuit board illuminates and the unit does not operate at all
- Outdoor unit . . . The LEDs on the printed circuit board flash and operation stops
- 2. The main power is turned on while the power supply wires between the indoor unit(s) are not connected (open circuit at section B)

Symptom:

Same as above. If operation continues, an abnormality will occur on the refrigeration cycle and operation will stop.

1

- Remote control . . . "CHECK" flashes
- Indoor unit (master) . . . The LEDs on the printed circuit board flash
- Indoor unit (slave) . . . The LEDs on the printed circuit board do not illuminate and the unit does not operate at all
- Outdoor unit . . . The LEDs on the printed circuit board flash and operation stops

 The main power is turned on while the remote control connection cord is not connected (open circuit at section C)

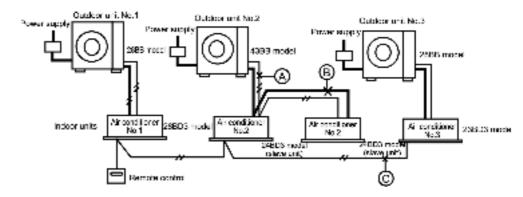
Symptom:

- Remote control unit . . . Display of "No power supply"
- Indoor unit (master) . . . LED1 on the printed circuit board stays illuminated and the unit does not operate
- Indoor unit (slave) . . . LED1 on the printed circuit board stays illuminated and the unit does not operate
- Outdoor unit . . . LED1 on the printed circuit board stays illuminated and the unit does not operate

Remedy

- 1. Turn off the main power.
- 2. Connect the disconnected wires correctly.
- 3. Turn the main power back on.
- After 1 minute, start operation using the remote control. (Indoor units . . . Operation will start according to the remote control setting.)

(Outdoor unit . . . Operation will start after 3-5 minutes.)


If slave units do not operate even after the wiring has been corrected (automatic addressing is not possible)

- Check that DIP switches 1 to 4 and DIP switch 8 are all set to OFF, and then stop operation.
- 2. Press the ADDRESS RESET button (SW3) at the outdoor unit for approximately 4 seconds (The self-diagnosis LEDS 2 to 8 will illuminate in order, and the system is reset once they are all illuminated.)

The above procedure cannot be used to carry out automatic address resetting during group control.

During group control operation

(System example)

 The main power is turned on while the transmission wires between the indoor unit and the outdoor unit are not connected (open circuit at section A).

Symptom:

Operation of indoor unit No. 1 and indoor unit No. 3 is possible.

However, "CHECK" flashes in the remote control unit display for 3-5 minutes after the main power is turned on.

- Remote control . . . "CHECK" flashes.
- Indoor unit No. 2 . . . LED2 on the printed circuit board flashes (both master and slave units).
- Outdoor unit No. 2 . . . LED3 and LED7 on the printed circuit board flash.
- The main power is turned on while the power supply wires between the indoor units are not connected (open circuit at section B).

Symptom:

Operation of indoor unit No. 1 and indoor unit No. 3 is possible.

However, if operation is then started in this condition, the combination of the 28BB outdoor unit and the 14BB indoor unit (master unit) will cause abnormal operation of indoor unit No. 2 to occur.

ĺ.

If operation continues, an abnormality will occur on the refrigeration cycle and aoperation will stop.

- Remote control . . . "CHECK" flashes (indoor unit No. 2 abnormality).
- Indoor unit No. 2 . . . LED2 on the printed circuit board flashes (both master and slave units).
- Outdoor unit No. 2 . . . The LEDs on the printed circuit board flash.
- The main power is turned on while the remote control connection cord is not connected (open circuit at section C).

Symptom:

Nothing abnormal appears on the remote control display, and operation of indoor unit. No. 1 and indoor unit No. 2 is possible.

However, indoor unit No. 3 cannot be operated.

Remedy

- 1. Turn off the main power.
 - \downarrow
- 2. Connect the disconnected wires correctly.

 \downarrow

3. Turn the main power back on.

1

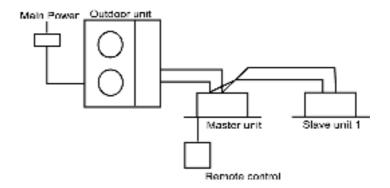
 After 1 minute, start operation using the remote control. (Indoor units . . . Operation will start according to the remote control setting.)

(Outdoor units . . . Operation will start after 3-5 minutes.)

If slave units do not operate even after the wiring has been corrected (automatic addressing is not possible)

- 1. Check that DIP switches 1 to 4 and DIP switch 8 are all set to OFF, and then stop operation.
 - \downarrow
- Press the "AIRSWING AUTO", "OPERATION" and "A/C No." buttons simultaneously.

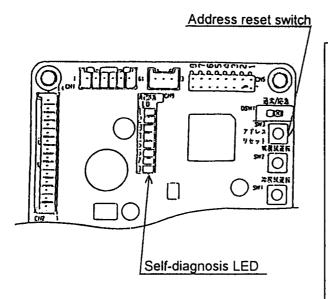
The addresses will be momentarily reset, and then automatic address setting will be carried out once more.


The above procedure cannot be used to carry out automatic address resetting of twin/triple control.

(Note on automatic address setting)

The printed circuit boards automatically store the connected system configuration when power is supplied. As a result, once the power has been turned on for these printed circuit boards, the units can not be changed about within the system, even if the units are of the same model and have same capacity.

Address setting for twin system


(Example)

1. Automatic address setting (no need to have dip-switch set)

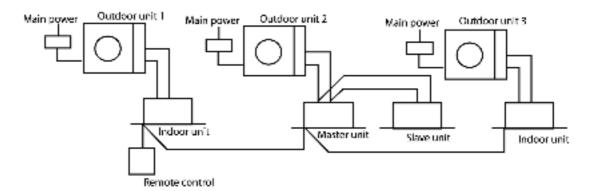
If the wiring connected properly as above example, the address is set automatically by the main power supply. An indoor unit with remote control will be set as the master. If the power source is installed to indoor units and outdoor separately, turn on the switch as the following procedure: outdoor unit, indoor unit with control, and other indoor units.

When the slave units do not operate (when address cannot be set)

Reset the address as the following procedure:

- After making sure that dip-switch No. 1 to 4 and No. 8 are OFF, stop the operation.
- Push address reset switch (SW3) on the outdoor unit PC board for 4 seconds. Self-diagnosis LED No. 2 to 8 will start blinking by order. And when all 7 pieces of LED (No. 2 ~ 8) are illuminated, address reset will be finished. Then the address for the slave unit will be reset.

Important: The address for the group control cannot be reset, using the above mentioned procedure.


2. Manual address setting (by dip-switch DSW1)

When you set the address manually, set the dip-switch of the PC board in the indoor unit as follow:

Master Unit	Slave unit (Slave No.1)
No need to set address for the RC of the master unit	DSW1
The address for the master unit will be set in the unit with RC	1 2 3 4 5 6 7 8 No. 8 ON, the others no change

Address setting for group control system

(Example)

1. Automatic address setting (no need to have dip-switch set)

If the wiring connected properly as above example, the AC numbers are set automatically by the main power supply. An indoor unit with remote control will be set as the master.

If the power source is installed to indoor units and outdoor separately, turn on the switch as the following procedure: outdoor unit, indoor unit with controller, and other indoor units. The AC number will be set at random.

2. Manual address setting (by dip-switch DSW1)

When you set the address manually, set the dip-switch of the PC board in the indoor unit as follow:

Manta di Init	Slave unit
Master Unit	Slave No.1
No need to set address for the RC of the master unit The address for the master unit will be set in the unit with RC	OSW1 OFF IN

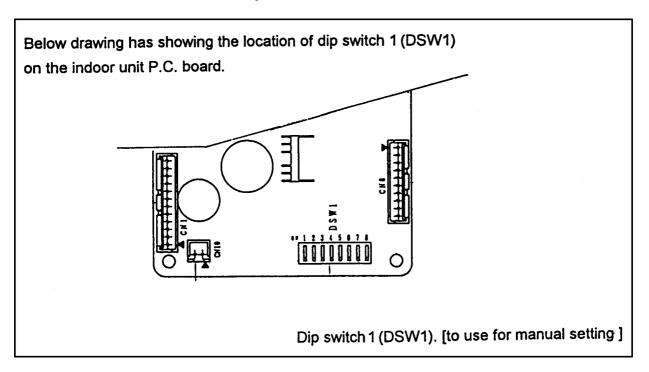
3. Manual address setting (by dip-switch DSW1)

When you set the address manually, set the dip-switch of the PC board in the indoor unit as follow:

Indoor unit No.	1	2	3	4	5	6	7	8
Dip-switch on the PCB of the Indoor unit (DSW1)	37F 64	0 + 0 H	0+ 0H	# # # # # # # # # # # # # # # # # # #	55 S S S S S S S S S S S S S S S S S S			287 25
Indoor unit Na.	No Change	No.1 ON 10	Nc.2 ON	No.1,2 CN	nь3 см 13	No.1, 3 ON	No.2, 3 ON	No.1, 2, 3 ON 16
Dip-switch on the PCB of the Indoor unit (DSW1)	2T 29	017 .09	2T 24	207 2A	01" 05	01	(4° 14 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 2 2 2 3 4 4 5 5 5 7 7 5 6 7 7 5 6 7 7 6 7 6 7 7 6 7 7 7 6 7 7 7 7
	No. 4 ON	No.1,4 ON	No.2, 4 CN	No.1,2,4 ON	No.3, 4 ON	No.1, 5, 4 CN	Na.2. 3, 4 ON	No.1, 2, 3, 4 ON

Procedures of deleting memory at twin control system

- 1. Set the "OFF" position for main power supply switch.
- 2. Set the "ON" position for No. 8 pin of dip switch (DSW1) on indoor unit P.C. board.
- 3. Take main power supply switch "ON" for one minute, and then main power supply switch off.
- 4. Set the "OFF" position for No. 8 pin of dip switch (DSW1).


Procedure of deleting memory at group control system

- 1. Set the "OFF" position for main power supply switch.
- 2. Set the "ON" position for No. 1 pin to No. 4 pin of dip switch (DSW1) on indoor unit P.C. board. (No. 8 pin of dip switch (DSW1) should be "OFF" position)
- 3. Take main power supply switch "ON" for one minute, and then main power supply switch off.
- 4. Set the "OFF" position for No. 1, No. 2, No. 3 and No. 4 pin of dip switch (DSW1).

(Important notice)

Above procedures are for deleting memory on indoor unit P.C. board. And it is not for Address reset.

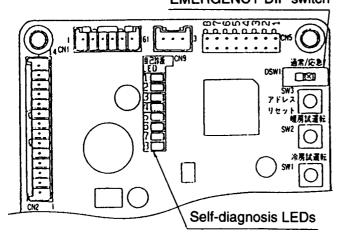
23.1. Indoor unit P.C. board layout.

24 EMERGENCY OPERATION

Emergency operation

Emergency operation of outdoor unit
 Emergency operation can be carried out by setting the
 DSW1 switch on the printed circuit board inside the
 outdoor unit to the EMERGENCY position. However,
 emergency operation is only carried out when an
 abnormality is detected by the indoor/outdoor
 temperature thermistors.

The resistance values of each thermistor are measured as shown in the table below to determine if there is an abnormality.


Thermistor resistance table

Temperature	Resistance va	alue (kΩ) ± 5%
	Room temperature thermistor	Pipe temperature thermistor
-20°C	205.8	197.8
-10°C	114.6	111.9
-5°C	87.3	85.4
0°C	67.0	65.8
5°C	51.8	51.0
10°C	40.4	39.9
15°C	31.7	30.7
20°C	25.1	25.0
25°C	20.0	20.0
30°C	16.1	16.0
40°C	10.4	10.6
50°C	6.9	7.1
60°C	4.7	4.9
70°C		3.5
80°C		2.5
90°C		1.8
100°C		1.4

The pipe temperature thermistor resistance value are the same for the indoor and outdoor units.

<When a thermistor abnormality is judged to have occurred>

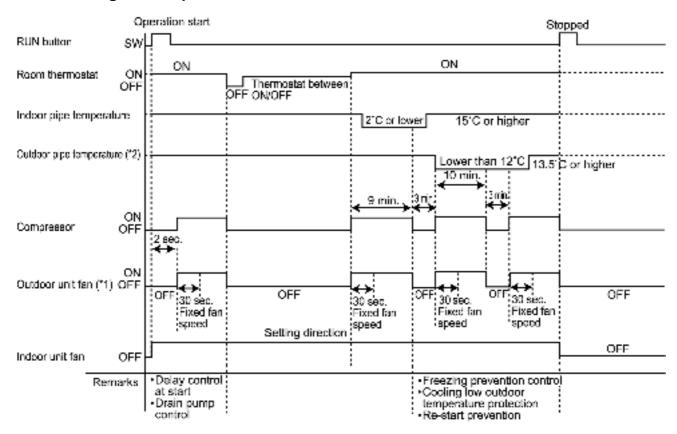
EMERGENCY DIP switch

 Set only the thermistor which shows an abnormality to the condition shown in the table below to carry out emergency operation

	Thermistor	Cooling mode	Heating mode
Indoor unit	Room temperature	Fixed a	at 25°C
	Room temperature	Shorted	Open

	Thermistor	Cooling mode	Heating mode
Outdoor unit	Discharge temperature	Open	Shorted
	Heat exchanger outlet temperature	Shorted	Open

- Refer to the circuit diagram for the connection locations for each thermistor.
- If there is an abnormality in the room temperature thermistor, the temperature will be fixed at 25°C regardless of the remote control unit display.


NOTE:

- Any abnormalities detected by the temperature thermistors are ignored during emergency operation, so that long-term operation in this mode should be avoided.
- After emergency mode operation has been completed and normal operation is to be resumed, turn the power supplies for the indoor and outdoor units off and return the DIP switch to the NORMAL position.
- Self-diagnosis LEDS 4 to 6 will flash during emergency operation.

25 CONTROL

25.1. Description of basic Functions

25.1.1. Cooling mode operation time chart

(*1)

Outdoor unit fan start control during cooling

At the start of cooling mode and drying mode operation, the outdoor unit heat exchanger outlet temperature is detected in order to set the fan speed.

Operation is carried out at the fan speed detected for 30 seconds.

Heat exchanger outlet temperature detected (T)	Outdoor unit fan start speed
T < 0°C	SUPER LOW
0°C ≤ T < 10°C	LOW
10°C ≤ T < 20°C	MEDIUM
20°C ≤ T < 25°C	HIGH
25°C ≤ T	SUPER HIGH

After 30 seconds, the heat exchanger outlet temperature is detected and the outdoor unit fan speed is changed automatically.

(*2)

Cooling low outdoor temperature protection

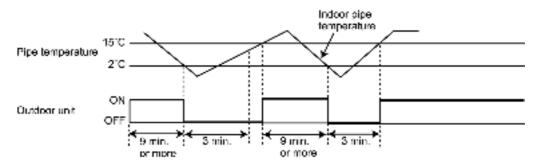
When the heat exchanger outlet temperature drops to less than 12°C for a continuous period of 10 minutes, the outdoor unit stops

This is cancelled after 3 minutes (re-start prevention)

- Remote control displays and indoor unit operation continue during this time.
- The 10-minute countdown is cleared if the compressor stops or if the temperature at the outdoor unit outlet rises to 13.5°C or higher.

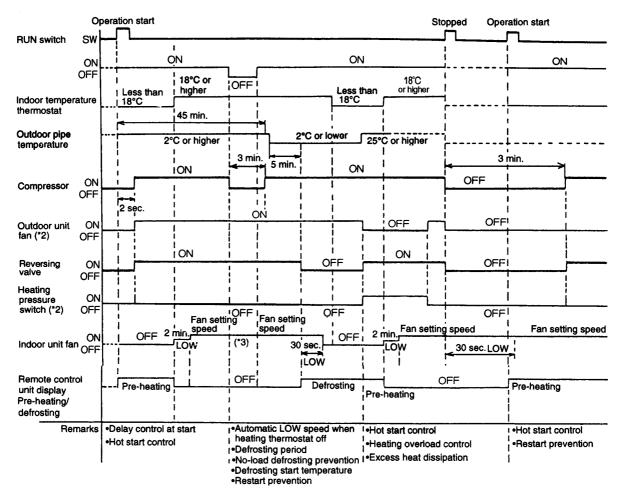
25.2. Freezing prevention control

1. Operation


During cooling mode operation, after 9 minutes have passed since the compressor turned on, the outdoor units stops operating when the temperature detected by the indoor unit pipe temperature sensor is 2°C or lower.

The indoor unit continues operating at the fan speed set by the remote control unit. (The remote control unit display does not change.)

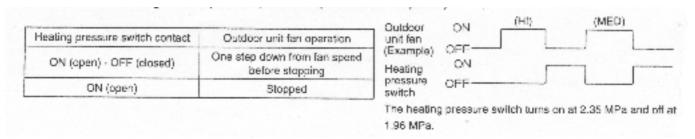
2. Cancelling


This control is cancelled when the temperature detected by the indoor unit pipe temperature sensor is 15°C or higher. (If the outdoor unit stops even though the temperature is 15°C or higher, restart prevention control will activated and the outdoor unit will not start again for 3 minutes.)

(The 9-minute countdown is cleared while the compressor is stopped.)

(The above illustration shows the operation when there are no conditions for turning the outdoor unit off other than freezing prevention.)

25.3. Heating mode operation time chart (Heat pump type only)



- (*3) Refer to "6 Indoor unit fan control when thermostat is off during heating mode operation"
- (*4) Refer to "9 Indoor thermostat characteristics"

(*2)

Outdoor unit fan control during heating mode operation

Under conditions when the compressor is on during heating mode operation (except during defrosting and when the liquid bypass valve is on), the outdoor unit fan is controlled by means of input (CN2) indicating whether the contact of the heating pressure switch on the outdoor unit circuit board is open or closed. (At the start of heating mode operation, the fan operates at HI speed.)

25.4. Hot starting

1. When heating mode operation starts

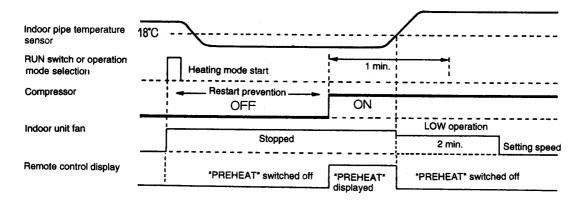
1 Start

Hot start control commences heating mode operation starts.

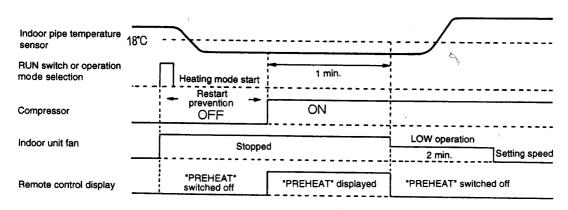
2. Operation

"PREHEAT" appears on the remote control display. (Other displays remain unchanged.)

At the indoor unit, the indoor unit fan stops. In addition, during hot starting, the louvre stays at the horizontal position (angle 0°).


3. Cancelling

After 1 minute has passed since heating mode operation started, or if the compressor has turned on, hot starting is cancelled when the temperature detected by the indoor unit pipe temperature sensor is 18°C or higher.


After cancellation, the "PREHEAT" display on the remote control disappears and the louvre operation returns to the previous setting.

(However, for 2 minutes after cancellation, the indoor unit fan operates at LOW speed, and then returns to the previous setting.)

<When hot start operation is cancelled by temperature>

<When hot start operation is cancelled by time>

2. When defrosting is complete

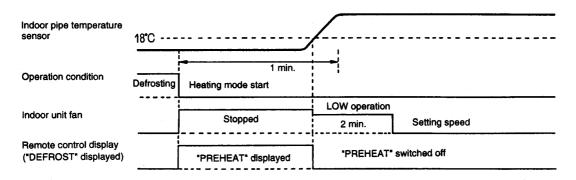
1. Start

Hot start control commences when defrosting is complete.

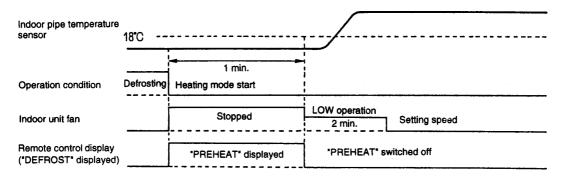
2. Operation

"PREHEAT" appears on the remote control display. (Other displays remain unchanged.)

At the indoor unit, the indoor unit fan stops. In addition, during hot starting, the louvre stays at the horizontal position (angle 0°).

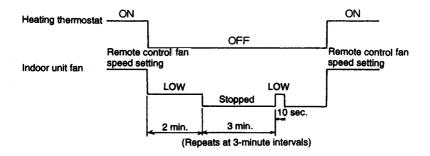

3. Cancelling

Hot starting is cancelled when the temperature detected by the indoor unit pipe temperature sensor is 18°C or higher, or after a maximum 1 minute has passed since defrosting was completed.


After cancellation, the "PREHEAT" display on the remote control disappears and the louvre operation returns to the previous setting.

(However, the indoor unit fan operates at LOW speed for 2 minutes after cancellation, and then returns to the previous setting.)

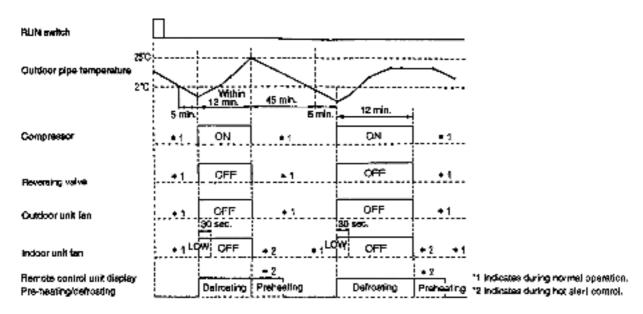
< When hot start operation is cancelled by temperature >



< When hot start operation is cancelled by time >

25.5. Indoor unit fan control when thermostat is off during heating mode operation

When the thermostat of the indoor unit turns off during heating mode operation, the indoor unit fan operates for 2 minutes at LOW and then stops. In addition, 5 minutes after the thermostat of the indoor unit turns off, the indoor unit fan again runs at LOW for 10 seconds, and at 3-minute intervals after that it switches back to LOW operation for 10 seconds.



25.6. Excess heat dissipation for indoor unit

The indoor unit fan continues operating for 30 seconds after heating mode operation turns off in order to dissipate excess heat.

- 1. When heating mode operation has stopped (LOW operation for 30 seconds)
- 2. When operation is set to a mode other than heating by means of the OPERATION MODE switch
- 3. If operation starts again during the 30 seconds mentioned in (1) above (The fan operates at LOW speed for the remainder of the 30 seconds in (1), and then hot start commences.)

25.7. Defrost mode operation time chart

1. Start and completion of defrosting

a. Start

During heating mode operation (including automatic heating), after the 45-minute defrosting cycle time has passed, defrosting starts if the temperature detected by the outdoor unit heat exchanger outlet sensor is 2°C or lower for a continuous 5-minute period.

However, if the outdoor unit fan is stopped, the start of defrosting will be delayed by 5 minutes.

The defrosting cycle is 50 minutes from the start of heating mode operation.

b. Completion

Defrosting mode operation stops 12 minutes after it starts, or if the temperature detected by the outdoor unit heat exchanger outlet sensor is 25°C or higher.

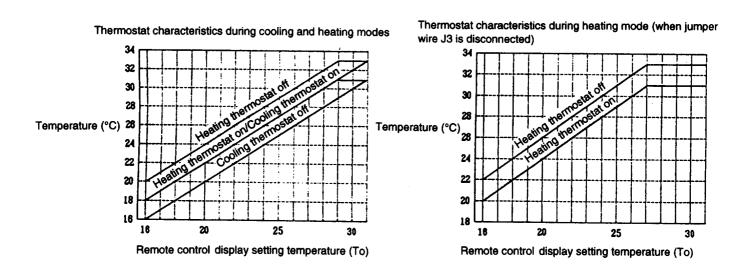
After defrosting is complete, hot starting commences.

c. Forced defrosting

If P8 on the outdoor unit circuit board is shorted while the compressor is 'ON' during heating mode operation and the temperature detected by the outdoor unit heat exchanger outlet sensor is 25°C or lower, defrosting is carried out regardless of the current starting conditions.

2. Operation

- a. During defrosting, the outdoor unit turns on the compressor and turns off the outdoor unit fan and the reversing valve.
- b. The indoor unit fan operates at LOW for 30 seconds after defrosting starts. After this, the indoor unit fan turns off until defrosting is complete.


(During defrosting, the louvre of the indoor unit stays at the horizontal.)

25.8. Indoor thermostat characteristic

1. Thermostat characteristic during cooling and heating modes

		Room temperature (°C)						
Operation mode	Setting temperature (To)	Operation	Differential					
		Operation	2.0K	4.0K				
Cooling	16	0 N	18.0					
		OFF	16.0	· ·				
	31	0 N	33.0					
		OFF	31.0					
	16	O N	18.0	20.0				
Heating *1		OFF	20.0	22.0				
	29~31	0 N	31.0	31.0				
	*1(27~31)	OFF	33.0	33.0				

^{*1} If jumper wire J3 on the indoor unit circuit board is disconnected, the thermostat characteristics during heating become 2 K or higher.

NOTE: If the remote control unit display setting temperature (To) is 29°C or higher, the heating thermostat turns on when the room temperature is 31°C.

2. Thermostat characteristics during dry mode

During dry mode operation, cooling mode operation is carried out in accordance with the indoor temperature as shown in the table below.

Mode	Indoor Temperature (°C) T	Operation details		
①	T ≧ 28	Cooling thermostat on	LO, Louvre horizontal	
*②	28 > T ≧ 25	Cooling thermostat on 10 min./fan 5 min., alternate operation	LO, Louvre horizontal	
*3	25 > T ≧ 21	Cooling thermostat on 5 min./fan 10 min., alternate operation	LO, Louvre horizontal	
4	21 ≧ T	Cooling thermostat off	LO, Louvre horizontal	

(Differential is 1.5 K)

- 3. Thermostat characteristics during automatic changeover operation
 - ①Settings at the start of automatic changeover operation
 When operation starts, or when operation changes from some other mode to automatic changeover mode, it starts at the temperature characteristics given in the table below.

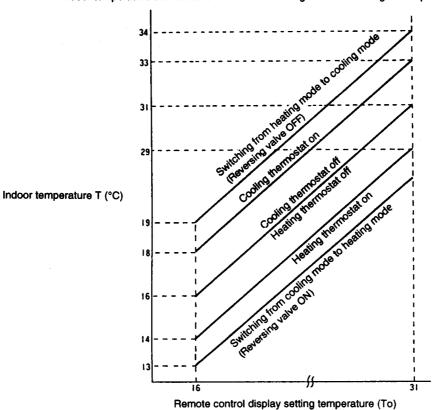
Indoor temperature (T) °C	Initial setting
T < remote control display temperature - 2 (°C)	Heating mode operation, thermostat on
Remote control display temperature ≥ T	Heating mode operation, thermostat off (fan mode operation)
Remote control display temperature ≦ T	Cooling mode operation, thermostat off (fan mode operation)
Remote control display temperature + 2 (°C) < T	Cooling mode operation, thermostat on

2 (°C): Thermostat differential

②Thermostat characteristics when switching between cooling and heating mode operation Switching between cooling mode and heating mode operation is carried out as shown in the table below. However, during automatic operation, the operation does not change again until 10 minutes after the thermostat has switched off in either cooling mode or heating mode.

(The 10-minute timer is cancelled when operation is changed to another mode or when operation stops and the thermostat turns on.)

Indoor temperature (T) °C	Operation switching
T ≥ Remote control display temperature + 3 (°C)	Heating mode → Cooling mode
T ≦ Remote control display temperature - 3 (°C)	Cooling mode → Heating mode


^{*}When modes ② and ③ are active, dry mode operation starts when the cooling thermostat turns on. When modes ② and ③ have been stopped, the 10 min./5 min. times have no relevance. However, if the indoor temperature is less than or equal to the remote control unit setting temperature, mode ④ is forcibly activated.

4. Thermostat characteristic during cooling mode and heating mode operation.

The thermostat on/off characteristic in both operation modes are given in the table below.

Operation mode	Indoor temperature (T) °C	Operation
Cooling mode	T > Remote control unit display temperature + 2 (°C)	Cooling thermostat on
Cooling mode	T ≤ Remote control unit display temperature	Cooling thermostat off
Lienting mode	T < Remote control unit display temperature - 2 (°C)	Heating thermostat on
Heating mode	T ≧ Remote control unit display temperature	Heating thermostat off

Indoor temperature thermostat characteristics during automatic changeover operation

Setting Indoor temperature T temperature To 3 min. 3 min. 10 min. 3 min. 10 min. i or more or more or more **RUN** switch Operation mode Cooling Heating Four-way valve Compressor ON

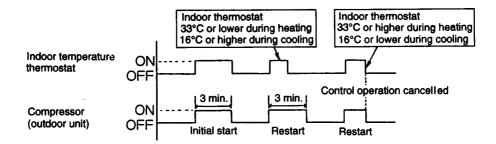
Automatic cooling/heating mode operation time chart

25.9. Indoor unit fan control

1. Fixing at LO, MED or HI

When LO, MED or HI is set, the relay switches and operation is carried out at that setting.

2. Automatic fan speed


When set to AUTO, the indoor unit fan operation changes as shown in the table below.

(Indoor temperature)-(Setting temperature) (Units: K)

	н	MED	LO	
Cooling mode	+ 3 or higher	+ 1.5 ~ 3	Less than + 1.5	
Heating mode	- 3 or lower	- 1.6 ~ -3	More than -1.5	
Fan mode	MEC	D irrespective of temper	ature	

25.10. Forced operation during restart

The compressor will not stop operating for 3 minutes after cooling mode or heating mode operation starts, even if the indoor unit thermostat turns off. (However, the compressor will stop operating during this time if the indoor unit air intake temperature exceeds 33°C during heating mode operation or if the indoor unit air intake temperature drops below 16°C during cooling mode operation.)

25.11. Outdoor unit fan excess heat dissipation control

1. Start

Carried out when the compressor switches from on to off (when the remote control unit is used to stop operation)

2. Operation

The outdoor unit fan runs at SUPER HI speed for approximately 60 seconds and then stops.

25.12. Discharge temperature control

1. Operation

When the discharge temperature sensor detects a temperature of 100°C or higher during cooling mode operation, the liquid bypass valve is turned on.

2. Cancelling

When the discharge temperature sensor detects a temperature of 70°C or lower, the liquid bypass valve is turned off.

25.13. Emergency operation

When the emergency operation switch (DSW1) on the outdoor unit printed circuit board is set to the emergency setting, then emergency operation is enabled. This allows normal operation to continue, with all abnormalities other than a discharge temperature abnormality, high pressure abnormality or overcurrent abnormality being ignored.

25.14. DIP switch settings

• Indoor unit printed circuit board (DSW1)

No.	Setting type	Factory shipment	Remarks
1		OFF	When group operation is being carried out using the remote
2	Group address setting	OFF	control, this address is set in order to control the order of
3	(twin/triple address setting)	OFF	starting for the indoor units.
4		OFF	(If No. 8 is ON, twin/triple address setting is carried out.)
5	Automatic restart	ON	When set to ON, operation after a power outage resumes at the settings which were in effect before the outage. (The backup time is semipermanent.)
6	Filter sign time	ON	When set to ON, the filter sign times can be set to 2,500 times.
7	Louvre control	*ON	When set to OFF, louvre control is disabled.
8	Twin/triple slave unit setting	OFF	When set to ON, the unit is designated as a slave unit.

26 INSTALLATION (INDOOR UNIT)

Precautions in terms of safety

Carry out installation work with reliability after thorough reading of this "Precautions in terms of safety".

- Precautions shown here are differentiated between and and and this is that have much chance for leading to significant result such as fatality or serious injury if wrong installation should be carried out are listed compiling them especially into the column of warnings.
 However, even in the case of items which are listed in the column of actions, such items also a chance for leading to significant result depending on the situations.
 In either case, important descriptions regarding the safety are listed, then observe them without fail.
- AS to indications with illustration

1	This mark means "Caution" or "Warning".
(1)	This mark means "Compulsion".

After installation work has been completed, not only make sure that the unit is free from any abnormal condition
through the execution of dry run but also explain how to use and how to perform maintenance of this unit to the
customer according to the instruction manual.
 In addition, request the customer to keep this manual for installation work together with instruction manual and
electric circuit diagram.

Warnings

- ▲ As to Installation, request the distributor or vendor to perform it. Imperfection in installation caused by that having been carried out by the customer himself leads to water leakage, electric shock, fire, etc.
- ▲ Carry out the installation work with reliability according to this manual for installation work. Imperfection in installation leads to water leakage, electric shock, fire, etc.
- ▲ Carry out the installation work with reliability on the place that bears the weight of this unit sufficiently. Insufficient strength leads to injury due to falling of the unit.
- ▲ Carry out predetermined installation work in preparation for strong wind such as typhoon, earthquake. Imperfection in installation work may lead to accident ariser from overturn, etc.
- ▲ Electric work shall be carried out by the persion qualified as an electric worker according to "Technical standards regarding electric installation", and manual for installation work, and use exclusive circuit without fail. Presence of insufficient capacity in power circuit or imperfection in execution leads to electric shock, fire, etc.
- ▲ Wiring shall be connected securely using specified cables and fix them securely so that external force of the ecales may not transfer to the terminal connection section, Imperfect connection and fixing leads to fire, etc.
- ▲ If installing inside a small room, measures should be taken to prevent refrigerant levels from building up to critical concentrations in the event of a refrigerant leak occurring. Please discuss with the place of purchase for advice on what measures may be necessary to prevent critical concentrations being exceeded. If the refrigerant leaks and reaches critical concentration levels, there is the danger that death from suffocation may result.
- ▲ Securely attach the protective covers for the outdoor unit connection cable and power cord so that they do not lift up after installation. If the covers are not properly attached and installed, the terminal connections may overheat, and fire or electric shock may result.
- ▲ Every indoor and outdoor unit requires a separate power supply. Switch off all supplies before accessing any electrical part.

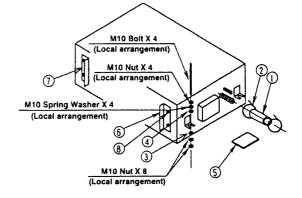
∆ Warnings

- ▲ If refrigerant gas escapes during installation, ventilate the affected area. If the refrigerant gas comes into contact with sparks or naked flames, it will cause toxic gases to be generated.
- ▲ Once installation work is complete, check that there are no refrigerant gas into the room and comes into contact with sparks or flame from a fan heater, stove or kitchen range, it will cause toxic gases to be generated.
- ▲ When performing piping work do not mix air except specified refrigerant (R407C) if refrigeration cycle, it causes capacity down, and risk of explosion and injury due to high tension inside refrigerantion cycle.
- ▲ Any electric work should only be carried out by a qualified technician.

▲ Carry out earthing work

Do not connect the earth return to the gas pipe, water line pipe, lightning rod, earth return of the telephone.

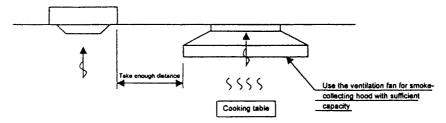
Imperfection in earth return may lead to


electric shock.

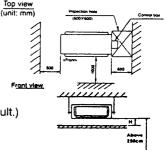
- ▲ Do not install the unit at the place where the possibility of inflammable gas leakage exists. If such gas leakage should arise and the gas builds up around the unit, such situation may lead to ignition.
- ▲ Mounting of the earth leakage breaker is required. Omission in mounting of the earth leakage breaker may lead to electric shock.
- ▲ Drain piping should be made to ensure secure drainage according to the manual for installation work and carry out the thermal insulation to prevent the occurrence of condensation. Imperfection in piping work leads to water leakage and may cause the house and property, etc. to become wet.
- ▲ Position the indoor unit, outdoor units, power cords and indoor/outdoor unit connection cables so that they are at least 1 metre away from televisions and radios. This is to avoid problems such as interference with picture and/or sound. (However, note that depending on the electromag netic wave conditions, interference may still occur even if the separation distance is more than 1 metre.)

1. ACCESSORIES PACKED IN THE INDOOR UNIT CONTAINER

NO.	Parts name	Q'ty
1	Thermal insulator for refrigerant pipe	1
2	Hose clip for thermal insulator	3
3	M10 Flange washer	4
4	M10 Flat washer	4
5	Thermal insulator for drainage hole	1
6	Duct flange side R	1
7	Duct flange side L	1
8	Screw	4

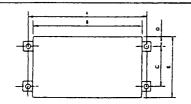

 (6) and (7) should be installed when the duct will be installed at the return hole.

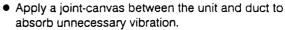
2. SELECTING THE LOCATION OF THE INDOOR UNIT

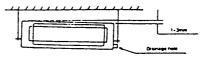

- The place shall easily bear a load exceeding four times the indoor unit's weight.
- The place shall be able to inspect the unit as the figure.
- The place where the unit shall be levelled.
- The place shall allow easy water drainage. (Suitable dimension "H" is necessary to get slope to drain as figure.)
- The place shall easily connect with the outdoor unit.
- The place where the unit is not affected by an electrical noise.
- Do not install the indoor unit in a laundry area. (Electric shocks may result.)
- The indoor unit must be free from any obstacles in path of air inlet nd outlet, and must allow spreading of air throughout the room.
- The indoor unit must be away from heat and steam sources, but avoid installing it near an entrance.
- Prepare a power outlet for the indoor unit nearby.
- The indoor unit must be at least 3m away from any noise-generating equipment. The electrical wiring must be shielded with steel conduit.
- If the power supply is subject to noise generation, add a suppressor.
- * If the height from floor to ceiling exceeds three metres, air flow distribution deteriorates and the effect is decreased.

NOTE • Thoroughly study the following installation locations:

- In such places as restaurants and kitchens, considerable amount of oil steam and flour adhere to the turbo fan, the fin of the heat exchanger and the drain pump, resulting in heat exchange reduction, spraying, dispersing of water drops, drain pump malfunction, etc.
 - Make sure that the ventilation fan for smoke-collecting hood on a cooking table has sufficient capacity so that it draws oily steam which should not flow into the suction of the air conditioner.
 - Make enough distance from cooking room to install the air conditioner in such place where it may not suck oily steam.

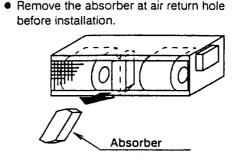



- 2. Avoid installing air conditioner in such circumstances where cutting oil mist or iron powder is in suspension in factories, etc.
- 3. Avoid places where inflammable gas is generated, flows-in, contaminated, or leaked.
- 4. Avoid places where sulphurous acid gas or corrosive gas is generated.
- 5. Avoid places near high frequency generators.


3. INSTALLATION OF INDOOR UNIT

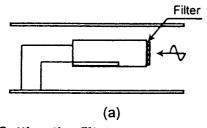
POSITION OF SUSPENSION BOLT

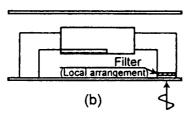
Install the unit leaning to a drainage hole side as a figure for easy water drainage.

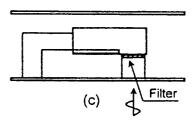


(unit: mm)

	Α	В	С	D	Ε
CS-W18BD3P	840	780	523	64	650
CS-W24BD3P CS-W28BD3P	1060	1000	523	64	650
CS-W34BD3P CS-W43BD3P	1560	1500	523	64	650

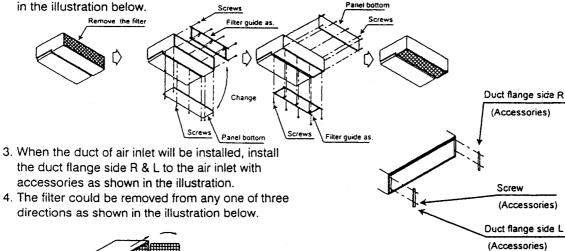

Caution


• Remove the absorber at air return hole before installation.



INSTALLATION OF DUCT

1. The duct of the air inlet could be installed by the three situations as shown in the illustration below (a) \sim (c).

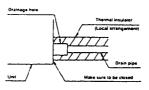

Setting the filter:

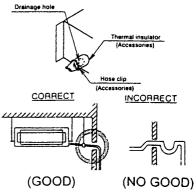
Case of (a): Reserve the filter and not install the duct of the air inlet.

Case of (b): Remove the filter (local arrangement) and install the duct of the air inlet.

Case of (c): Change the panel bottom to install the duct of the air inlet.

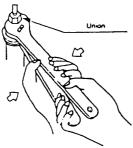
2. The panel bottom could be changed into the air inlet (case of (c)) as shown


4. INDOOR UNIT DRAIN PIPING


• The unit has two drainage holes at both side. The drainage hole without connection needs seal and thermal insulation with accessories.

 Always lay the drain with downward inclination (1/50 to 1/100). Prevent any upward flow or reverse flow in any part.

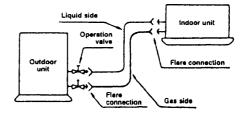
• 5mm or thicker formed thermal insulator shall always be provided for the drain pipe.



5. PIPING CONNECTION

Refrigerant is charged to the outdoor unit. For details, see the manual for installation work of outdoor unit. (Additional chargine, etc.)

- 1. Brazing for piping
 - a. Execute brazing before tightening the fiare nut.
 - b. Brazing must be executed while blowing nitrogen gas. (The is prevents generation of oxidized scale in copper pipe.)
- 2. When there is a lot of brazines for lone piping, install a strainer midway of the piping. Blow nitrogen gas or air to blow off dust in the pipe before connection.
- 3. Use clean copper pipe with inner wall surface free from mist and dust. Blow nitrogen gas or air to blow off dust in the pipe before connection.
- 4. Form the piping according to its routing. Avoid bending and bending back the same piping point more than three times. (This will result in hardening the pipe.)
- 5. After deforming the piping, align centres of the union fitting of the indoor unit and the piping, and tighten them firmly with wrenches
- 6. Connect pipe to the service valve or ball valve which is located below the outdoor unit.
- 7. After completed the piping connection be sure to check if there is as leakage in indoor and outdoor connection.



MODEL NAME	Liquid side piping	Gas side piping
CS-W18BD3P	ø 6.35	ø 12.7
CS-W24BD3P	ø 6.35	ø 15.88
CS-W28BD3P	ø 9.52	ø 15.88
CS-W34BD3P CS-W43BD3P	ø 9.52	ø 19.05

(Vacuum drying

After completing the piping connection, execute vacuum drying for the connection piping and the indoor unit.

The vacuum drying must be carried out using the service ports of both the liquid and gas side valves.

CAUTION

Use two wrenches and tighten with regular torque.

ĺ	lare nut fastening	torque N-m (kgf-cm)	
φ 6.35mm	18 (180)	φ 15.88mm	65 (660)
φ 9.52mm	42 (430)	φ 19.05mm	100 (1020)
φ 12.7mm	55 (560)		

6. ELECTRICAL WIRING

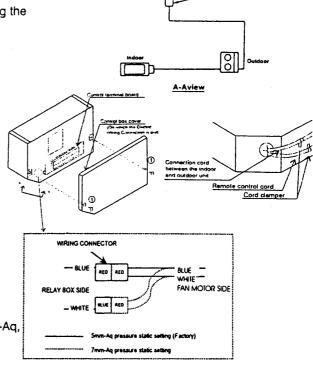
• All wiring must comply with local requirements.

 Select a power source that is capable of supplying the current required by the air conditioner.

WIRING CONNECTION

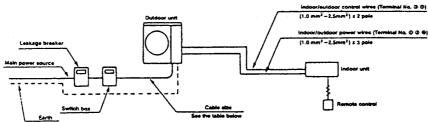
<INDOOR UNIT>

 Remove the control box cover for electrical connection between the indoor and outdoor unit. (Remove two screws ①).


• Use the cord clamper to fix the cord.

Caution

Make sure that screws of the terminal are free from looseness. Fastening torque M4 ... 118N • cm (12kgf • cm) M5 ... 196N • cm (20kgf • cm)


STATIC PRESSURE SETTING

- The static pressure of factory setting is 5mm-Aq.
- When you require the higher static pressure 7mm-Aq, change the connector in the relay box.

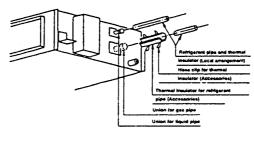
7. ELECTRICAL WIRING

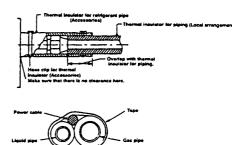
- 1. All wiring must comply with LOCAL REGULATIONS.
- 2. Select a power source that is capable of supplying the current required by the air conditioner.
- 3. Feed the power source to the unit via a distribution switchboard designed for this purpose.
- 4. Install a leakage breaker if the electrical wiring is subject to excessive moisture.
- 5. The terminal screws inside the control box may be loose due to vibration during transport. Check the screws for loose connection. (Running the air conditioner with loose connection can overload and damage electrical components.)
- 6. Check that the cable size, overcurrent devices, and switch specifications comply with those given in the table.
 - The wire diameters in the table indicate values compatible with a metal or resin conduit that can pass
 up to three such wires.
 - The overall length in the table indicates a value when the main power cord is subject to a voltage drop
 of 1%
- 7. Always ground the air conditioner with a grounding wire and screw to meet the LOCAL REGULATIONS.
- 8. Be sure to connect the wires correctly to terminal block with connecting the crimp type ring terminal to the wires.

All electric work must be carried out by a qualified technician according to proper technical standards for electrical work and according to installation manual for installation work, and proper specified circuits must be used. If circuits with insuffucient capacity are used, or if electrical work is not carried out properly, electric shocks or fire may result.

Use a standard power cord for Europe (such as H05RN-F or H07RN-F which confirms to CENELEC (HAR)
rating specifications.)

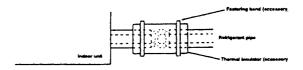
Cautions

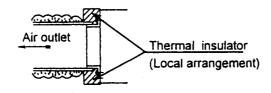

 Where ground work (earth) is carried out, do not connect the ground return to the gas pipe, water line pipe, grounded circuit of the telephone and lightning rod, or ground circuit of other product in which earth leakage breaker is incorporated. (Such action is prohibited by statute, etc.)


• In order to prevent malfunction (noise generation) of the equipment, carry out the wiring of the control cable for indoor and outdoor units (signal cable) isolating it from other power cable with separate cable.

8. HEAT INSULATION

THERMAL INSULATION

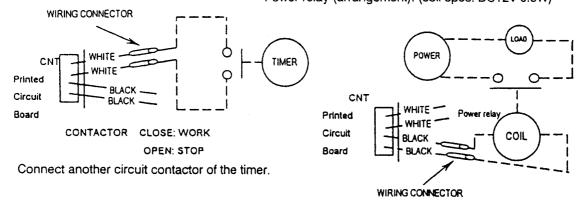




<REFRIGERANT PIPE>

- Insulate and tape both the gas piping and liquid piping.
 - 1. For the refrigerant and drain pipings, execute referencing the piping procedure label packed with the unit body.
- 2. Use the heat insulation material for the refrigerant piping which has an excellent heat-resistance (over 120°C).

- 3. Precautions in high humidity circumstance:
 - This air conditioner has been tested according to the "JIS Standard Conditions with Mist" and confirmed that there is not any fault. However, if it is operated for a long time in high humid atmosphere (dew point temperature: more than 23°C), water drops are liable to fall. In this case, add heat insulation material according to the following procedure:
 - Heat insulation material to be prepared ... Adiabatic glass wool with thickness 10 to 20mm
 - Stick glass wool on all air conditioners that are located in ceiling atmosphere.
 - In addition to the normal heat insulation (thickness: more than 8mm) for refrigerant piping (gas piping: thick piping) and drain piping, add further 10mm to 30mm thickness material.
- 4. The duct connection of the air outlet needs thermal insulation.



9. USE OF TIMER INPUT • FAN OUTPUT

Refer to the following diagram for connecting to Printed Circuit Board.

<TIMER INPUT> Connect to the white cord

<FAN OUTPUT> Connect to the black cord Power relay (arrangement): (coil spec. DC12V 0.9W)

10. CHECK THE FOLLOWING ITEMS WHEN INSTALLATION IS COMPLETE

- After completing work be sure to measure and record trial run properties, and store measuring data, etc.
- Measuring items are room temperature outside temperature suction temperature blow out temperature wind speed wind amount voltage current abnormal vibration abnormal noise running pressure pipe temperature withstand pressure and air tight pressure.
- As for structure and appearance, check on the below items.
- ☐ Is circulation of air adequate?
- ☐ Is draining smooth?
- ☐ Is heat insulation complete? (refrigerant and drain piping)
- ☐ Is there any leakage of refrigerant?

- ☐ Is remote control switch operated?
- ☐ Are there any faulty wiring?
- ☐ Are not terminal screws loosened?
- ☐ Tightening torque (N.cm {kgf.cm})

M3..... 69-98 { 7-10 }

M4...157-196 { 16-20 }

M5...196-245 { 20-25 }

11. DELIVERY TO OUR CUSTOMERS

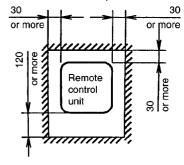
• Teach the customer the operation and maintenance procedures, using the operation manual (air filter cleaning, temperature control, etc.)

As for work specifications of the outdoor unit, read the WORK INSTRUCTION attached to the outdoor unit.

Wired Remote Control Installation Manual

- Before installing the wired remote control, be sure to thoroughly read the "Notes with regard to safety" section of the installation manual provided with the indoor unit.
- After installing the wired remote control, carry out a test operation to check that the remote control functions
 properly, and also explain the operation and cleaning procedures to the customer in accordance with the details in
 instruction manual. Furthermore, ask the customer to keep this installation manual and the instruction manual in a
 safe place for later reference.

1. ACCESSORIES SUPPLIED WITH WIRED REMOTE CONTROL

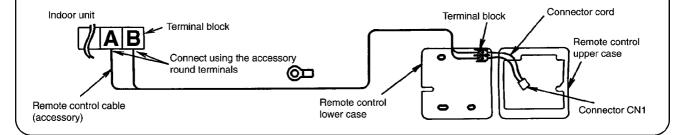

Name	Q'ty	Diagram	Remark	Name	Q'ty	Diagram	Remark
Remote	1			4mm screw	3	e ttt®	Installing the remote control to a wall
Remote			Length	M4 screw	3	~	Installing the remote control to an outlet box
control cable	1		(10m)	Round terminal	2	©	Connecting to indoor unit terminal block

2. NOTES REGARDING WIRED REMOTE CONTROL SETTING-UP LOCATION

- Select a place where the remote control can be operated easily (after obtaining approval from the building's owner).
- Install in a place which is away from direct sunlight and as free from humidity as possible.
- Install in a place which is as flat as possible to avoid warping of the remote control.

 (If installed to a wall an uneven surface, damage to the LCD case or operation problems may result.)
- Install in a place where the LCD can be seen easily. If the remote control is installed somewhere which is too low
 or too high, it may be difficult to read the LCD. (Standard height from the floor is 1.2 to 1.5 meters.)
- Avoid installing the remote control cable near refrigerant pipes or drain pipes.
- Install the remote control cable at least 5 cm away from other electric wires (including stereo and TV cables) to avoid mis-operation (electromagnetic noise).
- If passing the remote control cable through a wall, be sure to install a water trap above the cable.
- Allow sufficient space around the remote control as shown in the illustration at right.

Secure the remote control lower case to the wall or to an outlet.



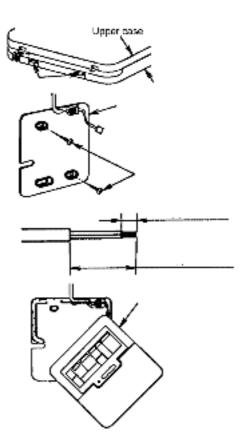
3. REMOTE CONTROL INSTALLATION

- Be sure to turn off the main power before installing and connecting the remote control.
 (If the remote control is connected while the power is still turned on, the remote control displays may not appear.)
 - If no displays appear on the remote control, check while referring to "If no remote control displays appear" in 5 Test operation.
- The remote control cable is live during use, so take care not to short it.

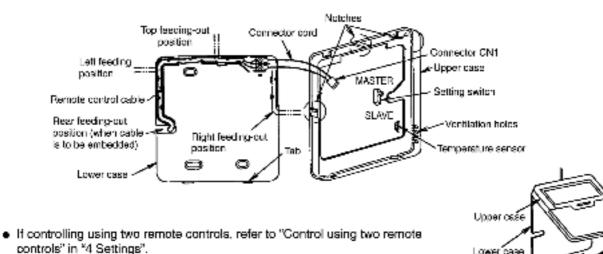
Remote control wiring

- Connect the indoor unit and the remote control as shown in the illustration below.
- The remote control cable is non-polar.
- At the time of shipment from the factory, the connector cable used to connect the terminal block and connector CN1 is disconnected. When connecting the remote control wiring and installing the remote control, be sure to connect the cord to the connector CN1.

NOTE


The maximum possible length for the remote control cable is 200 m.

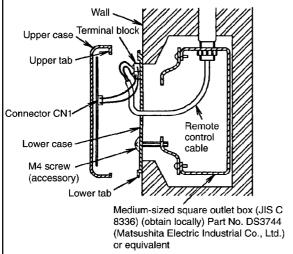
Remote control installation procedure


- Remove the remote control lower case.
 (Insert a flat-tipped screwdriver or similar 2 to 3 mm into one of the gaps at the bottom of the case, and then twist the screwdriver to open. [Refer to the illustration at right.])
 Be careful not to damage the lower case.
- Secure the lower case to the wall or outlet box.
 (Refer to the illustration at right for the embedded and exposed positions for remote control cable.)

(NOTE)

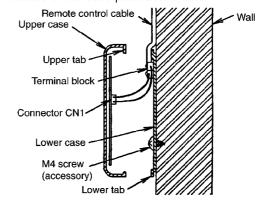
- Be sure to use only the accessory screws.
- Do not bend the lower case when tightening the screws.
 (If the screws are overtightened, damage may result.)
- Do not remove the protective tape which is affixed to the upper case circuit board.
- If installing the remote control with the remote control cable exposed, use pliers to cut a notch into the upper case. (The feeding-out direction can be either up or to the left or right)
- Strip the end of the remote control cable which is to be connected to the remote control. (Refer to the illustration at right)
- Route the remote control cable inside the lower case in accordance with the intended feeding-out direction. (Refer to the illustration below.)
 - Securely connect connector CN1. (If it is not connected the remote control will not operate.)

NOTE After connecting the connector, do not suspend the upper case by its own weight, otherwise the connector cord may break.



Secure the upper case to the lower case.

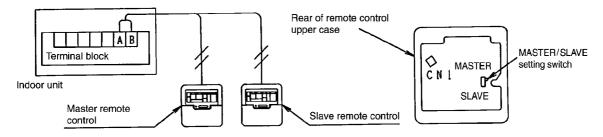
(Hook the upper tab of the upper case into the lower case, and then push the upper case until it snaps shut onto the lower case tab, while being careful not to clamp the remote control cable and the connector cord.)


If remote control cable is embedded

- Embed an outlet box (JIS C 8336) into the wall, and then secure the remote control base plate to the outlet box with the two accessory M4 screws. Make sure that the base plate is flat against the wall at this time, with no bending (looseness)
- 2. Pass the remote control cable into the box and then install the remote control.

If installing with the remote control cable exposed

- 1. Secure the remote control base plate to the wall with the two accessory 4 mm screws.
- The feeding-out direction for the remote control cable can be either up or to the left or right. (Refer to the illustration above.)
 - After determining the feeding-out direction, use pliers to make a notch in the cover.
- Route the remote control cable as shown in the illustration above. Pull the cord firmly around the outside of the base plate at this time.


4. SETTINGS

Control using two remote control

- Up to two remote controls can be installed for a single indoor unit, and either remote control can be used to operate the indoor unit.
- The indoor unit can be operated with the last switch pressed having priority.
 - (1) Decide which is to be the master and which is to be the slave remote control.

The master or slave states of the remote control is set automatically. The MASTER/SLAVE setting switch can also be use to make the setting manually, however if a manual setting is made, that manual setting has priority.

- Be sure to turn off the main power before making a manual setting.
- (2) Connect the remote controls.
 - Connect both remote control to terminals (A) and (B) on the indoor unit terminal block (non-polar).

Group control

- All in group will be remote control thermistor setting when using the remote control thermistor.
- Up to a maximum of 16 indoor units can be connected at the time of group control. (Do not connect heat pump unit with cooling only unit.)
- Indoor unit No. is possible to set automatically at the time of group control. However, which indoor unit will be which number is unknown.

Indoor unit No. is also possible to set manually with DIP switches. Since manual address setting is priority, when performing automatic address setting after doing manual setting turn off all DIP switches from No. 1 to No. 4, and then stop the operation and press three switches such as [AIR SWING AUTO] [OPERATION] • [A/C No.] at the same time.

(Do not use manual address setting and automatic address setting together.)

	Indoor unit No.	1 4	2	2	4	5	£	7	0
	indoor driit No.	OFF ON	OFF ON	OFF ON	OFF ON	OFF ON	OFF ON	OFF ON	OFF ON
	DIP switch (DSW1) address	OFF ON 1	OFF ON	OFF ON	OFF UN 1	OFF ON 1	OFF ON	OFF ON	OFF ON
	setting on indoor unit printed	1 2	2	2	2	2 3	2 3	2 3	2 2
	circuit board.	3 4	2 3 4	 	3 4	4	- 3	 	-
l 6		5 6	5 6	5 6	5 6	5 6	5 6	5 6	5 6
Setting		Ĭ	<u> </u>	7	7	<u> </u>	= 7	l I = 17	7
Ι₩	A/C No. setting	8	8	8	8	8	8	8	8
ŭ	700 140. Setting	Unnecessary operation	1 ~ ON	2 ~ ON	1, 2 ~ ON	3 ~ ON	1, 3 ~ ON	2, 3 ~ ON	1, 2, 3 ~ ON
Manual	Indoor unit No.	9	10	11	12	13	14	15	16
⊒		OFF ON	OFF ON	OFF ON	OFF ON	OFF ON	OFF ON	OFF ON	OFF ON
la	DIP switch (DSW1) address	1 2 3		 		1 2	1 2	1 2	
2	setting on indoor unit printed]	2 3	3	3	3 4	3	3 4	3
	circuit board.	 	5	1 5	- 4 5	5	- 4 5	4 5	5
		■ 6 7	6	6	6 7	6 7	– 6	6 7	6 7
		8	ė ė	8	8	á á	8	8	é 8
	A/C No. setting	4 ~ ON	1, 4 ~ ON	2, 4 ~ ON	1, 2, 4 ~ ON	3, 4 ~ ON	1, 3, 4 ~ ON	2, 3, 4 ~ ON	1, 2, 3, 4 ~ ON

Automatic address resetting for group control

- The address settings for group control (air conditioner Nos. 1 to 16) can be reset automatically.
 - (1) While operation is stopped, press the AUTO switch. A/C NO, and OPERATION switches simultaneously.

Switching the thermistor

- The temperature detection thermistor can be switched between the thermistor at the indoor unit and the thermistor at the remote control. However, do not switch to the remote control thermistor if using two remote controls.
 - (1) While operation is stopped, press and hold the TEST RUN switch, and then press the UP and DOWN switches together.
 - (2) "00" or "01" will appear in the time display.
 - (3) Press the ▲ or ▼ timer switches to switch display between "00" and "01".
 - "00" ... Indoor unit setting (factory default)
 - "01" ... Remote control setting
 - (4) Press the SET switch. (Be sure to press the SET switch so that normal operation mode can be resumed.)
- Repeat the procedure in steps (1) to (4) to change the setting again.

Energy save setting

- Upper and lower limits can be set for the setting temperature during cooling and heating operation (Energy save setting)
 - (1) While operation is stopped, press the UP and DOWN switches simultaneously.
 - (2) "0" (zero) will flash in the clock display at this time, so press the SET switch.
 - (3) To set an upper limit (Setting a temperature above the energy save temperature will not be possible). Press the OPERATION switch unit HEAT is displayed.

Press the UP or DOWN switch to set the temperature.

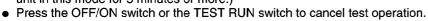
Press the SET switch.

Example: If the heating display is set to 28°C, setting the temperature to higher than 28°C will not be possible.

(4) To set a lower limit (Setting a temperature below the energy save temperature will not be possible).

Press the OPERATION switch unit COOL is displayed.

Press the UP or DOWN switch to set the temperature.


Press the SET switch.

Example: If the cooling display is set to 22°C, setting the temperature to lower than 22°C will not be possible.

- (5) If the CANCEL switch is pressed during steps (3) or (4) above, the energy save setting will be cleared.
- Press the SET switch or the CANCEL switch to return to normal operation mode after making an energy save setting in steps (3) to (5).

5. TEST OPERATION

- Turn on the main power.
- After 3 minutes have passed since the power was turned on, press the OFF/ON switch on the remote control. (No operation occurs within 3 minutes after the power was turned on.)
- Press the TEST RUN switch within 1 minute of pressing the OFF/ON switch.
- Next, select the operation mode. (Be sure to select cooling mode first, and run the unit in this mode for 5 minutes or more.)

- Test operation will be cancelled automatically after 30 minutes.

If no remote control displays appear

- Check whether LED1 (green) on the indoor unit printed circuit board is illuminated or switched off. If it is switched off, check the circuits on the indoor unit printed circuit board.
- Check once more that the remote control cable is securely connected. (Check for loose terminals, poor contacts, connection positions terminal block, etc.)

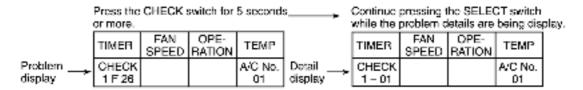
- If the above checks show that nothing is wrong but nothing appears on the remote control display, it is possible
 that the remote control was connected while the main power was still turned on.
 If such is the case, carry out the following.
- Set DIP switch (DSW1) No. 1 to 4 the ON position, and then turn on the main power. If the display appears
 after about 30 seconds, turn DIP switches 1 to 4 to OFF position.

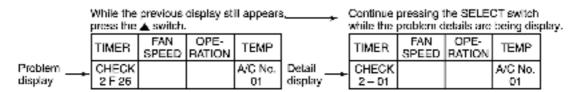

6. SELF-DIAGNOSIS FUNCTION

The LED1 (green) indicators on the indoor unit and outdoor unit printed circuit boards illuminate to indicate that the printed circuit boards are operating normally. If the LEDS are switched off or are flashing irregularly, check the power supply, and turn it off and then back on again.

If "CHECK" is flashing on the timer

- If the "CHECK" display on the wired remote control is flashing, the details of the problem(s) are displayed on the timer display screen each time the CHECK switch is pressed.
- Further details of the problem can be displayed by pressing the SELECT switch while the general problem details are being displayed.


Example of current problem display


If "CHECK" is not flashing on the timer

- If the "CHECK" display on the wired remote control is not flashing, press the CHECK switch continuously for 5
 seconds or more to display the problem details for the last problem or the problem before that.
- You can then switch between the display for the previous problem and the problem before that by pressing the timer ▲ or ▼ switches.
- Press the CHECK switch once more to return to the normal display.

Example of previous problem display

Example of abnormality display before previous display

- The display can be switched between the previous problem and the one before that by pressing ▲ and ▼ switches.
- · After eliminating the cause of the problem, press the CHECK switch once more to return to the normal display.
- If the problem disappears and operation returns to normal, CHECK display on the remote control will switch off, but the self-diagnosis LED will remain illuminated until operation is resumed.

27 INSTALLATION (OUTDOOR UNIT)

AIR CONDITIONERS OUTDOOR UNIT INSTALLATION INSTRUCTIONS

REFRIGERANT R 407C

HP	Model Name				
2 HP	CU-W18BBP5	CU-V18BBP5			
2.5 HP	CU-W2488P5	CU-V24BBP5 CU-V24BBP8			
3 HP	CU-W28BBP5 CU-W28BBP8	CU-V26BBP5			
4 HP	CU-W34BBF8	CU-V34BBP8			
5 HP	CU-W43BBF8	CU-V43BBP8			

Precautions in terms of safety

Carry out installation work with reliability after thorough reading of this "Precaution in terms of safety".

Precautions shown here are differentiated between <u>A Warnings</u> and <u>A Cautions</u>. Those that have much chances for leading to significant result such as fatality or serious injury if wrong installation would have been carried out are listed compiling them especially into the column of <u>A Warnings</u>.

However, even in the case of items which are listed in the column of $\Delta Cautions$, such items also have a chance for leading to significant result depending on the situations.

In either case, important descriptions regarding the safety are listed, then observe them without fail.

- As to indications with litustration.
 - △ This mark means "Caution" or "Warning".

Any electrical work should only be carried out by qualified

This mark means "Earth".

Switch off all supplies before accessing any electrical part.

After installation work has been completed, do not only make sure that the unit is free from any abnormal condition through the
execution of trial run but also explain how to use and how to perform maintenance of this unit to the customer eccording to the
instruction manual.

In addition, request the customer to keep this manual for installation work together with instruction manual.

Warnings The appliance must be installed by technician, who takes into technician and use exclusive circuits without fail. account the requirements given by ISO5149 or eventual Presence of insufficient capacity in power circuit or imperfection. equivalent requirements. In execution leeds to electric shock, fire, etc. As to installation, request the distributor or vandor to perform. ▲ Wiring shall be connected securely using specified cables and it. Imperfection in installation caused by that having been fix them securely so that external force of the cables may not carried out by the customer himself may lead to water leakage, transfer to the terminal connection section. Imperied connection and fixing leads to fire, etc. electric shock, fire, etc. Carry out the installation work with reliability according to this. ▲ If installing inside a small room, measures should be taken to manual for installation work. prevent refrigerant levels from building up to critical imperfection in installation leads to water leakage, electric concentrations in the event of a refrigerant leak occurring. shock, fire, etc. Please discuss with the piece of purchase for advice, on what messures may be necessary to prevent critical concentrations. Carry out the installation work with reliability on the place that. being exceeded. If the refrigerant leaks and reaches critical can bear the weight of this unit sufficiently. Insufficient strength concentration levels, there is the danger that death from leads to injury due to falling of the unit. suffocation may result. Carry out predetermined installation work in preparation for Securely attach the protective covers for the outdoor unit. strong wind such as typhoon, earthquake. Imperfection in connection cables and power cord so that they do not lift up. installation work may lead to accidents arisen from overturn, after installation. If the covers are not property attached and installed, the terminal connections may overheal, and fire or electric shock may result. The unit must be installed in accordance with applicable national and local regulations.

- If refrigerant gas escapes during installation, ventilate the affected area. If the refrigerant gas comes into contact with sparks or naked flames, it will cause toxic gases to be generated.
- Once installation work is completed, check that there are no refrigerant gas in the room that can come into contact with sparks or flames from a fan heater, slove or kitchen range, which will cause toxic gases to be generated.
- When performing piping work do not mix air except for specified refrigerant (R407C) in refrigeration cycle, it causes capacity down, and risk of explosion and injury due to high tension inside the refrigerant cycle.

♠ Cautions

Carry out Earthing work. Do not connect the Earth return to the gas pipe, water line pipe, lightning rod and telephone lines.

Imperfection in Earth return may lead to electric shock

- Do not install the unit at the place where the possibility of inflammable gas leakage exists. If such gas leakages should arise and the gas builds up around the unit, such situation may lead to ignition.
- Mounting of the earth leakage circuit breaker is required. Omission in mounting of the earth leakage circuit breaker may lead to electric shock.
- Drain piping should be made to ensure secure drainage according to the manual for installation work and carry out the thermal insulation to prevent the occurrence of condensation. Imperfection in piping work leads to water leakage and may cause the house and property, etc. to become wet.
- ▲ Position the indoor unit and outdoor unit, power cords and indoor/outdoor unit connection cables in a way so that they are at least 1 metre away from televisions and radios.

 This is to avoid problems such as interference with picture and/or sound. (However, note that depending on the electromagnetic wave conditions, interference may still occur even if the separation distance is more than 1 metre.)

1. ACCESSORIES SUPPLIED WITH OUTDOOR UNIT

The following parts are supplied as accessories with each outdoor unit.
 Check that all accessory parts are present before installing the outdoor unit.

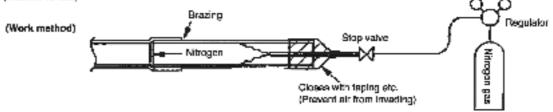
Part	name	Qty	Diagram	Application
	ective itling	2	8	For protecting electrical wires
Bandi	ng strao	3	6	For tying electrical wires tagether

Heat pump-types only					
Part name	Q'iy	Diagram	Application		
Drain elbow AS	1	P	For connecting the drain pipe (with ring seet)		

2. BEFORE INSTALLATION WORK

- This product is using new refrigeration (R407C). The basic way of installation work is the same as usual, but water and
 impurities should be controlled more strictly than before due to characteristic of refrigerating machine oil. Therefore, selection
 of materials to use and processing, storing and brazing need appropriate construction and control.
 - Tools and materials.

There are tools and materials for both new refrigeration and usual refrigeration you can use together and for either two of them you can use. Use the below for new refrigeration.


- Vacuum pump (with back flow preventor system).
- Gas leakage detection warning device.

- Gauge manifold
- Charge hose

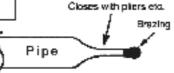
Installation work

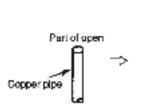
Brazing work

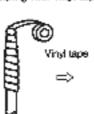
Brazing work needs replacing air inside pipe with nitrogen gas in order to prevent oxidization scale from occurring. This is called nitrogen replacement, and one of very important work in brazing refrigerant piping. (Oxidation preventive is not possible to use)

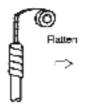
Prevention measure for refrigerant piping.

Prevention measure for refrigerant piping is very important work to prevent water-dust-rubbish from getting in. All piping terminals needs sealing such as shown below.


Place	Period of work	Method of seal		
Outside	More than 1 month	Pinch		
COURIDO	Leas than 1 morth	Pinch or taping		
Inskle	Not specified	Filian or laping		


How to pinch


Close terminal part of piping with pilers and seal the gap with brazing.


How to tape

Seal terminal part of piping with vinyl tape.

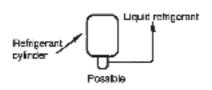
Vacuum pumping

The purpose of vacuum pumping work is to remove and dry air inside the pliping or nitrogen at air tightness test. Perform the work carefully.

▲ Caution Use the vacuum pump with the backflow prevention mechanism to prevent backflow of pit.

Vacuuming time | 60 minutes or more


Vacuum pump capacity 60 Vmin or more


Refrigerent filling

Refrigerant illing must be done in the state of liquid refrigerant. If this is done in gas refrigerant, the balance of refrigerant composition will collapse and damage. the operation.

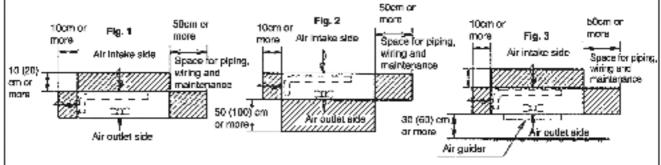
For the use of a gas cylinder without siphon inside, tum it upaide down and use it.

(We recommend manifold with sight glass.)

CAUTION Do not use a "CHARGE CYLINDER".

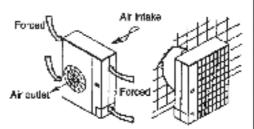
A Caution

As a rule, please collect all existing refrigerants in the system outside the system when the refrigerant leakage occurs by the system.


After that, please fill new refrigerant of a regulated amount again.

(3. SELECTING THE OUTDOOR UNIT INSTALLATION LOCATIONS)

- Select location which satisfies the following condition, and then confirm with the customer that such a place is satisfactory before installing the outdoor unit.
 - There should be sufficient ventilation.
 - The outdoor unit should be sheltered as much as possible from rain and direct sunlight, and the air should be able to move around so that hol and cold air do not build up.
 - There should not be animals or plants near the air outlet which could be adversely affected by hot or cold air coming out from the unit.
 - The outlet air and operating noise should not be a nuisance to other occupants nearby.
 - The location should be able to withstand the full weight and vibration of the outdoor unit, and it should also be level and safe for the unit to be installed.



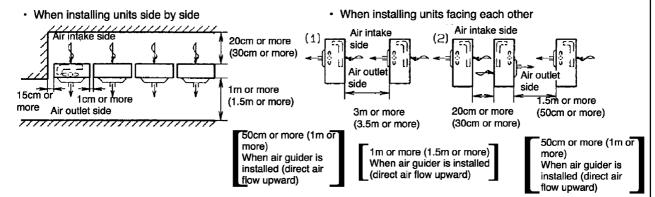
- 7. There should not be danger of flammable gas or corrosive gas leaks.
- 8. There should be as little back-ventilation (air blowing directly onto the tan) as possible.
 (if strong wind blows directly onto the fan, it may cause problems with normal operation.)
 - If you know which direction the prevailing wind comes from during the operating sesson, set the outdoor unit at a right-angle to this wind direction, or so that the air outlet faces toward a wall or fence.
 - If there are obstructions near the outdoor unit and the wind direction is not constant, install an optional air guider.
- 9. Do not allow any obstacles near the outdoor unit which will interfere with air flow around the air intake and air outlet.
- 10. If installing in a location which is prone to snowfall, place the installation base as high as possible, and be sure to install a roof or enclosure which does not allow anow to accumulate.
- Avoid installing the unit in places where petroleum products (such as machine cil), salinity, sulphurous, gases or high-frequency noise are present.
- Be sure to leave enough space around the outdoor unit to maintain proper performance and to allow access for routine maintenance.
 - Allow enough space from any obstacles as shown in Fig.1.2 below in order to prevent short-circuits from occurring.
 (If installing more than one outdoor unit, make the necessary space available as outlined in 14.)
 However, there should be at least 1 metre of free space above the unit.
 - The height of any obstacles at the air intake and outlet sides should not be greater than the height of the outdoor unit.
- When facing the air intake side toward a wall.
- When facing the air outlet side toward a wall.
- When using an optional air guider for outdoor units.

* Maintain sufficient space above the unit.

13. If is not possible to leave 50 (100)cm at the air outlet side as shown in Fig. 2, the installation method shown in Fig. 3 can be used if an optional air guider for outdoor units is installed. Install according to the instructions given in the separate instruction manual.

(NOTE)

When installing the air guider


- 1) If directing the air upward, there should not be obstacles above the outdoor unit.
- 2) If directing the air to the left or right, there should not be obstacles at the left or right of the outdoor unit.
- Never use the air guider in locations which are subject to snowfall.If snow gets inside the air guider, it could cause the fan to freeze up.
- 4) If connecting outdoor units in series, direct the flow upward.

Air guider for outdoor units

	Model Name	Part No.
CU-W18BBP5 CU-W24BBP5	CU-V18BBP5 CU-V24BBP5 CU-V24BBP8	CZ-UF01P
CU-W28BBP5 CU-W28BBP8	CU-V28BBP5 CU-V28BBP8	

	Model Name		
CU-W34BBP8	CU-V34BBP8	CZ-UF01P	
CU-W43BBP8	CU-V43BBP8	(2 sets)	

14.If installing more than one outdoor unit, allow enough space around each unit as shown below.

* Maintain sufficient space above the unit.

Values inside brackets indicate distances when installing the 4HP-5HP.

• The distance given above are the minimum distance required in order to maintain proper performance. Allow as much space as possible in order to get the best performance from the units.

(4. TRANSPORTING AND INSTALLING THE OUTDOOR UNIT)

- Transporting
 - 1. The outdoor unit should be transported in its original packaging as close to the installation location as possible.
 - 2. If suspending the outdoor unit, use a rope or belt, and use cloth or wood as padding in order to avoid damaging the unit.
 - Use the handles at left and right to transport the unit, and be careful not to touch your hands or other objects against the fan.

- Installation
 - Read the "Selecting the outdoor unit installation location" section thoroughly before installing the outdoor unit.
 - 2. If installing the unit to a concrete base or other solid base, use M10 or W3/8 bolts and nuts to secure the unit, and ensure that the unit is fully upright and level.

(The anchor bolt positions are shown in the diagram at the right side.)

In particular, install the unit at a distance from the neighbouring building which conforms to regulations specified by local noise emission regulation standards.

3. Do not install the outdoor unit to the building's roof.

4. If there is a possibility that vibration may be transmitted to the rooms of the building, place rubber insulation between the unit and the installation surface.

Drain elbow installation position

Drain water will be discharged from the outdoor unit when operating the system
in heating or defrosting modes. Select an installation location which will allow the
water to drain away properly, or provide a drainage channel so that the water can
drain away.

(If this is not done, the drain water may freeze during winter, or the water may spill down to areas underneath the installation location.)

* If a drain pipe needs to be installed, insert the accessory drain elbow into the mounting hole at the bottom of the outdoor unit, and connect a hose with an inside diameter of 15mm to this drain elbow.

(The hose is not supplied.)

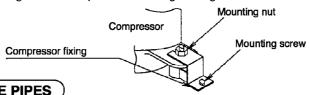
In cold regions (where the outdoor air temperature can drop to 0°C or below

continuously for 2-3 days), the drain water may freeze, and this may prevent the fan from operating. Do not use the drain

* If using the drain elbow, install the outdoor unit on

a base which is at least 5cm high.

elbow in such cases.



Model Name			Bmm	Cmm	Dmm
CU-W18BBP5 CU-W24BBP5 CU-W28BBP5	CU-V18BBP5 CU-V24BBP5 CU-V24BBP8 CU-V28BBP5	500	200	360	450
CU-W28BBP8	CU-V28BBP8				
CU-W34BBP8 CU-W43BBP8	CU-V34BBP8 CU-V43BBP8	700	200	360	720

(CAUTION)

(NOTE)

- Be sure to remove the compressor fixing brackets.
 (Some models are not equipped with compressor fixing brackets.)
- To remove, first remove the mounting screws, loosen the compressor mounting nuts and then pull sideways.
- After removing, be sure to tighten the compressor mounting nuts again.

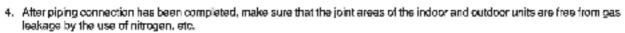
5. CONNECTING THE PIPES

- Use a clean pipe which does not include water or dust for inside of piping.
- When cutting the refrigerant pipes, a piping cutter must be used. Before connecting the refrigerant pipes, blow nitrogen and blow off dust in the pipes.

(Never use tools which cause a lot of dust such as a saw and a magnet.)

- When waxing replace nitrogen inside the piping after removing dirt and dust. (In order to prevent oxidization scale from forming inside the piping).
- The refrigerant pipes are of particular importance.

The installation work for refrigerant cycles in separate-type air conditioners must be carried out perfectly.


1. Refer to the table below for the pipe diameters equivalent lengths and indoor/outdoor unit difference of elevation.

	Model Name		Pipe diameter (mm)		Difference of	
	Model Name	Liquid-side pipes	Gas-side pipes	length (m)	elevation (m)	
CU-W18BBP5	CU-V18BBP5	ø6.35	ø12.70	40	30	
CU-W24BBP5	CU-V24BBP5	ø6.35	ø15.88	50	30	
	CU-V24BBP8	Ø0.33 Ø13.00		30		
CU-W28BBP5 CU-W28BBP8	CU-V28BBP5 CU-V28BBP8	ø9.52	ø15.88	50	30	
CU-W34BBP8 CU-W43BBP8	CU-V34BBP8 CU-V43BBP8	ø9.52	ø19.05	50	30	

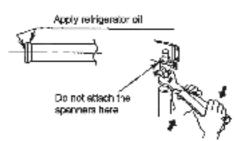
- Local pipes can project in any of four directions.
 - Make holes in the pipe panels for the pipes to pass through.
 - Be sure to install the pipe panels to prevent rain from getting inside the outdoor unit.
 [Removing the service panel].
 - (1) Remove the two mounting screws.
 - (2) Slide the service panel downward to release the pawls. After this, pull the service panel toward you to remove it.
- 3. Notes when connecting the refrigerant pipes.
 - · Use clean copper, pipes with no water or dust on the insides.
 - Use phosphorus-free, unjointed copper pipes for the refrigerant pipes.
 - If it is necessary to cut the refrigerant pipes, be sure to use a pipe cutter, and use compressed nitrogen or an air blower to clean out any foreign particles from inside the pipe.
 - Be careful not to let any dust, foreign materials or water get inside the pipes during connection.
 - If bending the pipes, allow as large a bending radius as possible. Do not flex the pipes any more than necessary.
 - If joining pipe ends, do so before tightening the flare nut.
 - Always blow the pipe end with nitrogen while joining pipe ends.
 (This will prevent any oxide scaling from occurring inside the pipe.)
 - If using long pipe lengths with several joined pipe ends, insert strainers inside the pipes (Strainers are not supplied.)
 - When tightening the flare nuts, coat the flares (both inside surfaces) with a small amount of refrigerator oil, and screw in about 3-4 turns at first by hand.
 - Refer to the following table for the tightening torques. Be sure to use two spenners to tighten.

(If the nuts are overlightened, it may cause the flares to break or leak.)

Flare nut fastening torque N-m (kgf-cm)						
ø8.35mm	18 (180)	a15.88mm	85 (880)			
e9.52mm	42 (430)	a19.05mm	100 (1020)			
≊12.7mm	55 (580)					

5. Air purge within connection piping shall be carried out by evacuation.

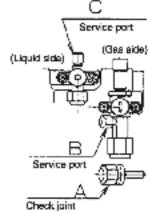

6. HEAT INSULATION


🛆 Caution

Use a material with good heat-resistant properties as the heat insulation for the pipes. Be sure to insulate both the gas-side and liquid-side pipes. If the pipes are not adequately insulated, condensation or water laskages may occur.

Liquid-side pipes Material that can withstand 120°C or higher

Gas-side pipes



7. CHARGING WITH REFRIGERANT

- At the time of shipment from the factory, this unit is charged with enough refrigerant for an equivalent pipe length of 30m. If the
 equivalent pipe length used will be 80m or less, no additional charging will be necessary.
- If the equivalent pipe length will be between 30 and 50m (40m), charge with additional refrigerant according to the equivalent length given in the table below.
 - For standard type

Mode	Model Neme		Equivalent length
CU-W1888P5	GU-V18BBP5	0.02kg/m	40m
CU-W2488P5	CU-V24B8P5 CU-V24B8P8	0.02kg/m	50ın
CU-W2888P5 CU-W2880P8 CU-W3488P8 CU-W4388P8	CU-V28B8P5 CU-V28B8P8 CU-V34B8P8 CU-V43B8P8	0.05kg/m	OVIII

(Heat pump type only.)

- Pump down operation.
 - Operate the pump down according to the following procedures.

Ι.		
	Pmcadure Pmcadure	Notes
	1. Confirm the valve on the liquid side and the gas side is surely open.	
	Press the COCL switch on outdoor printed board for 1 second or more.	Perform the cooling operation for five minutes or more.
	 Set the liquid side 3-way valve to the close position and until when the gauge indicates at 0.1Mpz (1kg/cm²G). 	When the valve is shut halfway, the compressor is occasion-
	 Immediately set the gas side valve to the close position and press the CCOL switch (stort the operation unit). 	ally damaged.

The pump down is completed above.

(CHECKING THE PRESSURE)

Check the pressure at the service port on the valve and the check joint where the pipe ends have been joined according to the table at below.

Heat pur	np model	

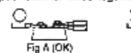
ı		Α	B
ı	During cooling operation	High	Low
ı	carrig cooling aperation	pressure	pressure
	During heating operation	Low pressure	High pressure

	С	В
During cooling operation	High pressure	Low pressure

Cooling model only

(8. ELECTRICAL WIRING

⚠ Warning	The units must be connected to the supply cables for fixed wiring by qualified technician. Feed the power source to the unit via a distribution switch board designed for this purpose, the switch should disconnected all poles with a contact separation of at least 3mm. When the supply cable is damaged, it must be replaced by qualified technician.
⚠ Caution	Be sure to install a current leakage breaker, main switch and fuse to the main power supply, otherwise electric shocks may result.
⚠ Caution	Be sure to connect the unit to secure earth connection. If the earthing work is not carried out properly, electric shocks may result.
⚠ Warning	Wiring shall be connected securely by using specified cables and fix them securely so that external force of the cables may not transfer to the terminal connection section. Imperied connection and fixing leads to fire, etc.


- Connect the power supply wiring and indoor/outdoor unit connection wiring according to the electrical circuit diagram instructions.
- Clamp the wires securely to the terminal connections using cord clamps so that no undue force is placed on the wires.
- Once all wiring work has been completed, tie the wires and cords together with the binding strap so that they do not touch other parts such as the compressor and pipes.

 Connect the power supply line to a 3-phase/380-415V (or single-phase) 220-240V) power supply

If the phase is reversed, the self-diagnosis function will be activated and the unit will not operate. In such cases, switch over any two of the power supply wires (L1,L2,L3) (3-phase models only).

(Never operate the unit by pressing the electromagnetic switch.)

- 2. The equipment shall be connected to a suitable mains network with a main. impedance less than the valve indicated in the table of power supply specifications.
- 3. Be sure to connect the wires correctly to terminal board with connecting the crimp type ring terminal to the wires.
- 4. The binding screws inside the power supply box may become loosened due to vibration during transportation, so check that they are tightened securely.
- Tighten the binding screws to the specified torque while referring to the table below.
- 6. If connecting two separate wires to a single crimped terminal, place the two crimped terminal wires together as shown in Fig. A. (If the arrangement shown in Fig. B is used, poor contacts or contact damage may result.)
- 7. If momentarily turning on the power aupply for both the indoor and outdoor units, do not turn the power off again until at least 1 minute has passed (except when a reversed phase has been detected).

Check that the wires'

do not touch the

compressor, etc.

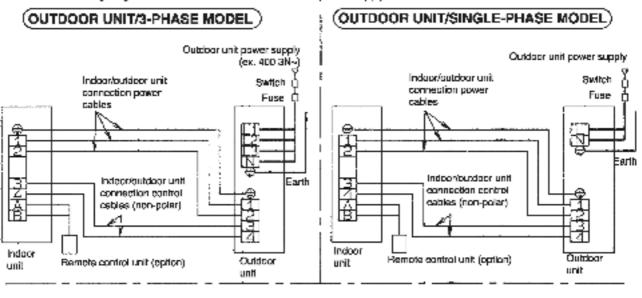
terminal board

Corrirol elreuit

terminal board

Cord clamp

Binding strep (eccessory)


Δ Warning.

Use only the specified cables for wiring connections. Connect the cable securely, and secure them. properly so that no undue force will be applied to the terminal connections.

If the terminals are loose or if the wires are not connected securely, fire may result.

T	erminal screw	Tightening torque N-cm (kgf-cm)
Г	M3	69-98 (7-10)
	M4	157~198 (16~20)
	M5	198~245 {20~25}

Refer to the following diagrams for details on how to connect the power supply cables and indoor/outdoor unit connection cables.

Power supply specifications

Model name		Leakage current		Leakage Gircuit breaker current (Vinimum Capacity)		4mm² cable	Indoor/outdoor unit connection	Indeer/outdeer unit connection	Maximum permissible
		breaker (A)	Switch (A)	Fuse (A)	supply cables	based on length (m)	power cables (terminals (1) ② ⊖)	power cables (terminals ② ④)	impedance (Ω)
QU-W1888P5 QU-V1888P5	220(4 240V-	20	20	20		17			0.04
CU-W248BPS CU-V248BPS	220V- 240V-	30	30	30		13			0.04
OU-V2458P8	380V-415V 3N-	10	10	10		41			0.025
OU-W2888P5 OU-V2888P5	220V- 240V-	30	30	30	4mm²	11	2.5mm² x 3	1.0mm² x 2	0.04
OLFW2868P8 OLFV2868P8	380V-415V 3N-	10	1:0	10		38			0.025
CU-W3488P8 CU-V3488P8	380V-415V 3M~	15	15	15		25			0.025
CU-W4388P8 CU-V4368P8	380V-415V 3N-	20	20	20		20	-		0.025

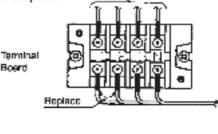
(NOTE)

- Where ground work (earth) is carried out, do not connect the ground return to the gas pipe, water line pipe, grounded. circuit of the telephone and lightning rod, or ground circuit of other product in which earth leekage breaker is incorporated. (Such action is prohibited by statute, etc.)
- 2. In order to prevent malfunction (noise generation) of the equipment, carry out the wiring of the control cable for indoor and outdoor units (signal cable) isolating it from other power cable with separate cable.
 - 3. Use the standard power supply cables for Europe (such as H05RN-F or H07RN-F which conforms to CENELEC (HAR) rating specifications) or use the cables based on IEC standard. (245IEC57, 245IEC66)
 - 4. Select the particular size of electrical wire for power supply cables in accordance with the standards of the given nation. and region.

9. CONNECTING POWER SUPPLY CABLES

 If reversed phase is detected and the self-diagnosis function is activated after connecting the power supply cables, carry out the following operation. Unit alce wiring

Board


Switch over any two of the power supply wires which are connected to the power supply terminal board.

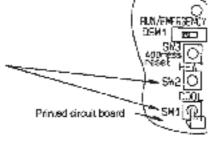
Turn off the main power supply before correcting the phase.

CAUTION)

Never operate the unit by pressing the electromagnetic switch.

 Never correct the phase by switching over any of the wires inside. the unit.

3N~880-


415V Power **Bource**

(10. PRECAUTIONS WITH REGARD TO TEST OPERATION

(CAUTION)

- Always be sure to use a properly-insulated tool to operate the switch on the circuit board. (Do not use your finger or a metallic object.)
- Never turn on the power supply until all installation work has been completed.
- Turn on the circuit-breaker 12 hours or more before a test run. (By supplying power to crankcase heater, compressor is warmed and liquid compressing is prevented.)
- For three-phase models, check that the phase is not reversed.
 - (If the phase is reversed, the LED on the printed circuit board will flash.)
- Check that the voltage is 90% of rated voltage or higher when starting the unit.
 (The unit will not operate if the voltage is less than 90% of rated voltage.)
- Test operation can be carried out using the remote control unit or by using the switch on the printed circuit board inside the outdoor unit.
- If carrying out test operation at the printed circuit board of the outdoor unit, follow the procedure given below. (If using the
 remote control unit to carry out test operation, refer to the installation manual which is supplied with the indoor unit.)
- Press the COOL or HEAT switch for 1 second or more. The LEDs will operate as follows during test operation.
 (Be sure to select cooling mode first, and run the units in this mode for 5 minutes or more.)
- * The compressor will stop momentarily when the operation mode is changed.

Test operation mode	LEDs on printed circuit board
Cooling test mode	LEDs 2-4 flash, LEDs 5-8 switch off
Heating test mode	LEDs 2-5 switch off, LEDs 6-8 flash

- Press the TEST button once more to cancel test operation mode.
- When performing heating test operation when the outside temperature is high, or cooling test operation when the outside temperature is low, the protection circuits may sometimes operate within a few minutes.

NOTE 1

These units are equipped with connection error prevention circuits. If the units do not operate, it is possible that the connection error prevention circuits have been operated. In such cases, check that the drive wires (connected to terminals 1 and 2) and the control wires (connected to terminals 3 and 4) are connected correctly. If they are connected incorrectly, connect them correctly. Normal operation should then commence.

Power wires (indoor unit power supply)

Indoor unit

Outdoor unit

Outdoor unit

Outdoor unit

(CORRECT)

Control wires

Power wires (indoor unit power supply)

Indoor unit

Outdoor unit

Control wires

(NOTE 2)

Do not short the remote control unit wires to each other. (The protection circuit will be activated and the units will not operate.) Once the cause of the short is eliminated, normal operation will then be possible.

NOTE 3

When running the units in heating mode during test operation, be sure to run the units in cooling mode first before selecting this mode. If heating mode is selected first, it may cause problems with operation of the compressor.

NOTE 4

Test operation should be carried out for a minimum of 5 minutes. (Test operation will be cancelled automatically after 30 minutes.)

NOTE 5

Test operation mode should always be cancelled once test operation itself has been completed.

NOTE 6

Emergency operation can be carried out by setting the DSW1 switch on the printed circuit board inside the outdoor unit to the EMERGENCY position. During emergency operation, any abnormalities detected by the temperature thermistors are ignored while the outdoor unit is operating, so that long-term operation in this mode should be avoided. After emergency mode operation has been completed and normal operation is to be resumed, turn the power supplies for the indoor and outdoor units off and then back on again.

Set the abnormal temperature thermistor only to the setting in the table below when carrying out emergency operation.

	Thermistor	Cooling operation	Heating operation
Indoor unit side	Room temperature detection	Fixed at 25°C	
indoor drift side	Pipe temperature detection	Shorted	Open
Outdoor unit side	Discharge thermistor detection	Open	Open
Cutacoi anii side	Heat exchanger outlet temperature detection	Shorted	Open

 $*$ Refer to the electrical circuit diagrams for details on wiring for each thermistor.

NOTE 7

If the self-diagnosis function reports a problem but more than one problem has developed at the indoor and/or outdoor units, the problem display on the remote control unit may not match the LED display on the outdoor unit printed circuit board. In such cases, check both locations and remove the causes of the problems.

11. AS TO MAKING THE INSPECTION AFTER COMPLETION OF WORK FULLY UNDERSTOOD

- At the time when the work has been completed, measure and record the characteristics of test run without fail and keep the
 measuring date, etc.
- Carry out the measurement regarding room temperature outside air temperature, suction and air discharge temperatures, wind velocity, wind volume, voltage current, presence of abnormal vibration, operating pressure, piping temperature, compressive pressure, airtight pressure as items to be measured.
- As to the structure and appearance, check following items.

☐ Short circuit of the blow-out air. ☐ Mistake in wiring

☐ Smooth flow of the drain ☐ Reliable connection of the grand wire

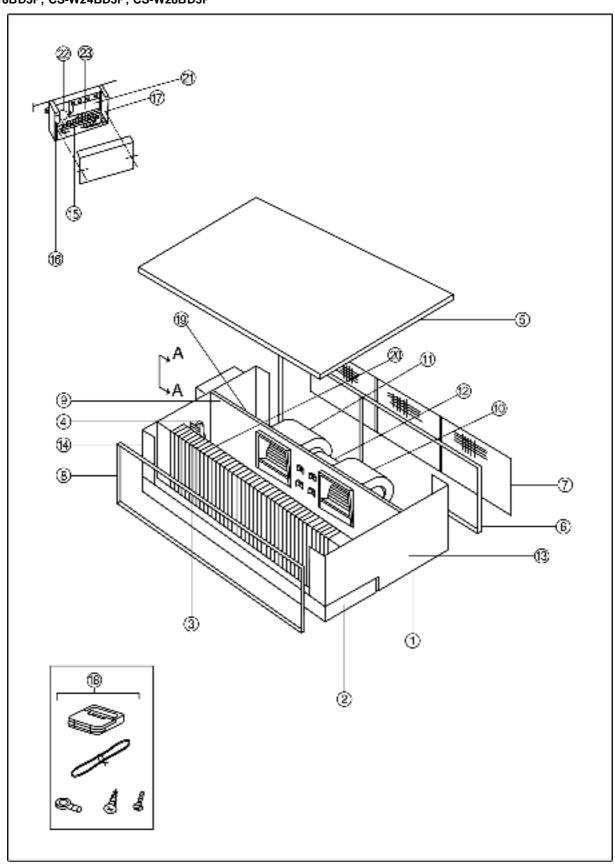
☐ Reliable thermal insulation ☐ Looseness in terminal screw, fastening torque

☐ Leakage of refrigerant M3... 69-98N•cm{7-10kgf•cm} M4...157-196N•cm{16-20kgf•cm}

M5...196-245N•cm{20-25kgf•cm}

12. AS TO DELIVERY TO THE CUSTOMER

- Request the customer to operate this air conditioner viewing instruction manual come with indoor unit in practice and explain how to operate.
- Deliver the instruction manual to the customer without fail.


13. AS TO PARTS TO BE SOLD SEPARATELY

We are preparing air guider for outdoor unit and parts to be sold separately for indoor unit, etc., however, as to details of mounting method, etc., observe respective instruction manual.

28 REPLACEMENT PARTS

28.1. INDOOR UNIT

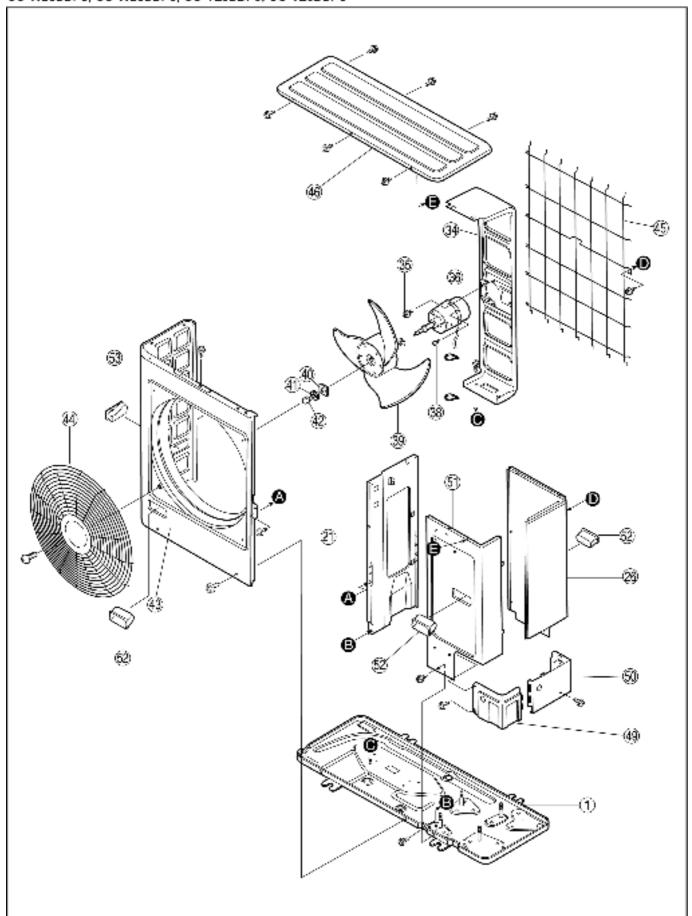
CS-W18BD3P, CS-W24BD3P, CS-W28BD3P

CS-W18BD3P, CS-W24BD3P, CS-W28BD3P

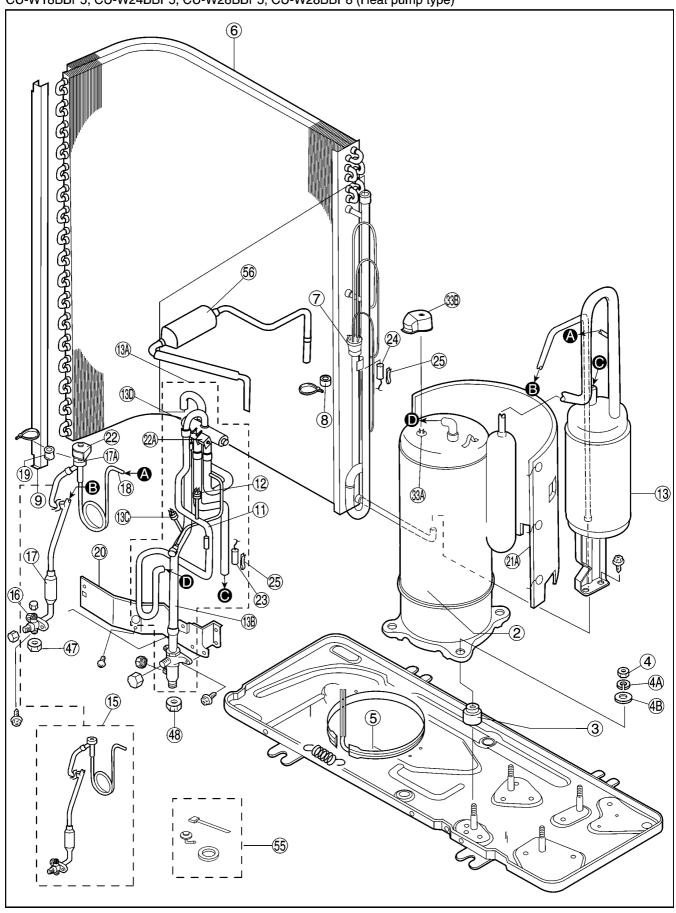
REF. NO.	PARTS NAME	PARTS NUMBER		QUANTITY PER 1 UNIT	
			CS-W18BD3P	CS-W24BD3P	CS-W28BD3P
1	Cabinet (Bottom)	P02-T05840		1	1
	İ	P02-T06800	1		
2	Drain pan	P42-T02760		1	1
		P42-T02900	1		
3	Evaporator	P45-T07280	1		
		P45-T07250		1	1
4	Distributor ass'y.	P45-T07190	1		
		P45-T07200		1	
		P45-T07210			1
5	Cabinet (Top)	P42-T02730		1	1
		P42-T02930	1		
6	Filter guide ass'y.	P42-T02790		1	1
		P42-T02920	1		
7	Filter	P03-T01370		1	1
		P03-T01390	1		
8	Duct flange ass'y.	P42-T02770		1	1
	(Outlet)	P42-T02910	1		
9	Fan base ass'y.	P45-T05080		1	1
		P45-T05700	1		
10	Casing R ass'y.	P45-T06760	1	1	1
11	Casing L ass'y.	P45-T06770	1	1	1
12	Fan motor	P06-T03481			1
		P06-T03491	1	1	
13	Panel side R ass'y.	P42-T02750	1	1	1
14	Panel side L ass'y.	P42-T02950	1		
		P42-T02960		1	1
15	Terminal board	P06-T04680	1	1	1
16	Capacitor	P06-T04630			1
		P06-T04640		1	
		P06-T04380	1		
17	Transformer	P06-T04300	1	1	1
18	Remote control (P)	A75C2240	1	1	1
19	Thermistor ass'y.	06-854510	1	1	1
20	Coil sensor	06-853760	1	1	1
21	PCB assembly	A53D0003A	1	1	1
22	Noise filter	A491018	1	1	1
		(P46-T06120)			
23	PCB fuse (250V T3.15A)		1	1	1

All parts are supplied from Taiwan (Tamaco).

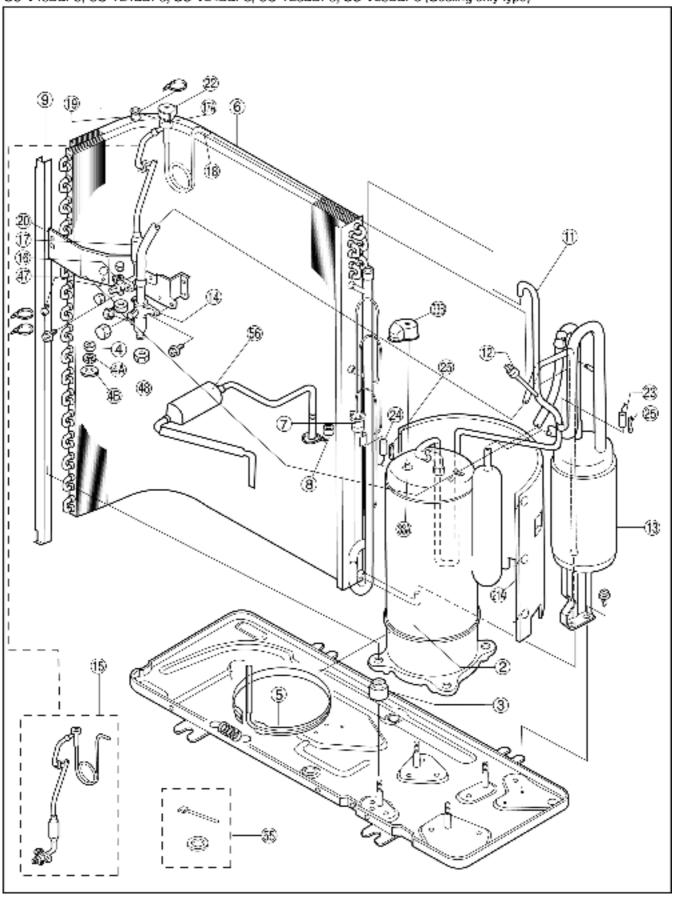
CS-W34BD3P, CS-W43BD3P

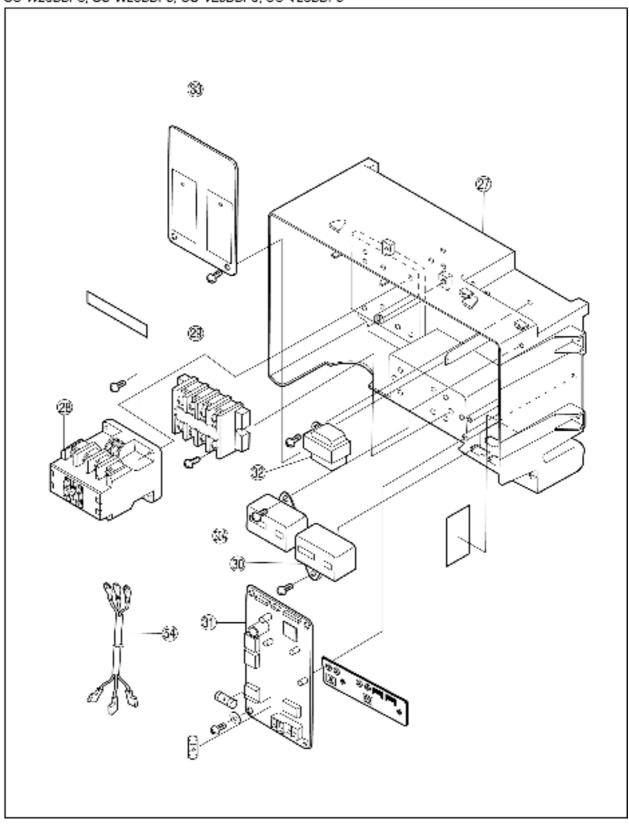

CS-W34BD3P, CS-W43BD3P

REF. NO.	PARTS NAME	PARTS NUMBER	QUANTITY PER UNIT		
			CS-W34BD3P	CS-W43BD3P	
1	Cabinet (Bottom)	P02-T06560	1	1	
2	Drain pan	P42-T02860	1	1	
3	Evaporator	P45-T07240	1		
	·	P45-T07290		1	
4	Distributor ass'y.	P45-T07220	1		
		P45-T07230		1	
5	Cabinet (Top)	P42-T02830	1	1	
6	Filter guide ass'y.	P42-T02840	1	1	
7	Filter	P03-T01380	1	1	
8	Duct flange ass'y. (Outlet)	P42-T02850	1	1	
9	Fan base ass'y.	P45-T05320	1		
		P45-T05330		1	
10	Casing R ass'y	P45-T06870	1	2	
11	Casing L ass'y	P45-T06880	2	2	
12	Fan motor	P06-T03520	1		
		P06-T03530		1	
13	Stay fan motor	P06-T03780	1	1	
14	Shaft	P05-T12620	1		
		P05-T12630		2	
15	Bearing supporter	P05-T12640	1	2	
16	Connector shaft	H08C205	1	2	
17	Bearing	H641003	1	2	
18	Panel side R ass'y.	P42-T02750	1	1	
19	Panel side L ass'y.	P42-T02960	1	1	
20	Terminal board	P06-T04680	1	1	
21	Capacitor	P06-T04640	1	1	
22	Transformer	P06-T04650	1	1	
23	Remote control (P)	A75C2240	1	1	
24	Thermistor ass'y.	06-854510	1	1	
25	Coil sensor	06-853760	1	1	
26	PCB assembly	A53D0003A	1	1	
27	Noise filter	A491018 (P46-T06120)	1	1	
28	PCB fuse (250V T3.15A)		1	1	


All parts are supplied from Taiwan (Tamaco).

28.2. OUTDOOR UNIT

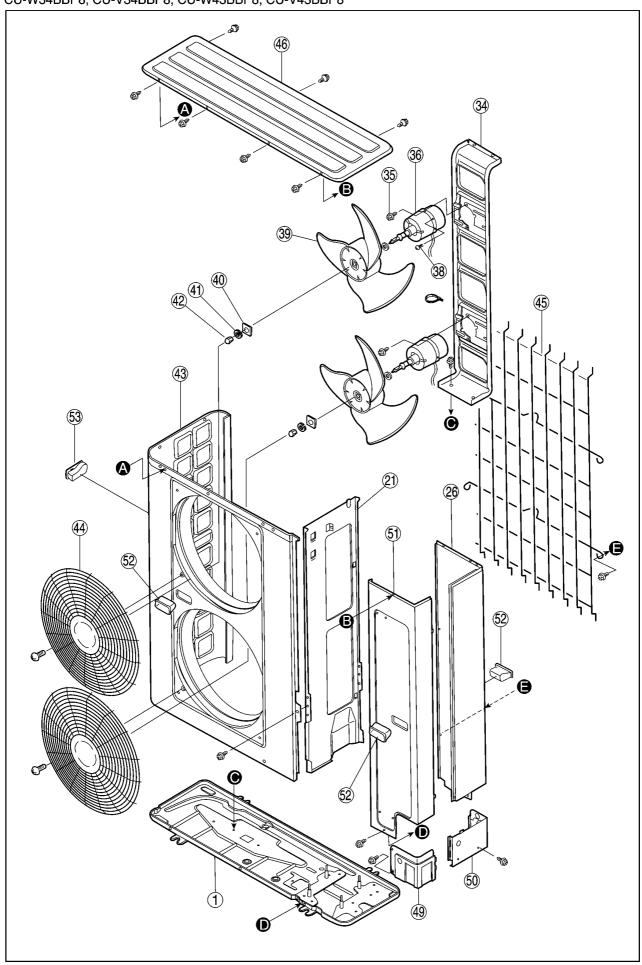

CU-W18BBP5, CU-V18BBP5, CU-W24BBP5, CU-V24BBP5, CU-W28BBP5, CU-W28BBP8, CU-V28BBP8, CU-V28BBP8

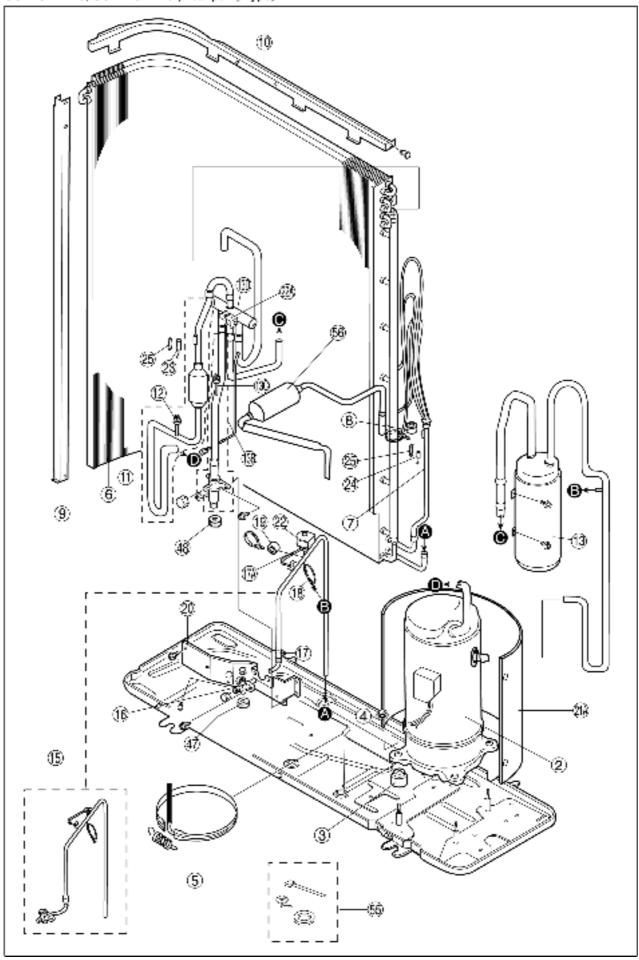


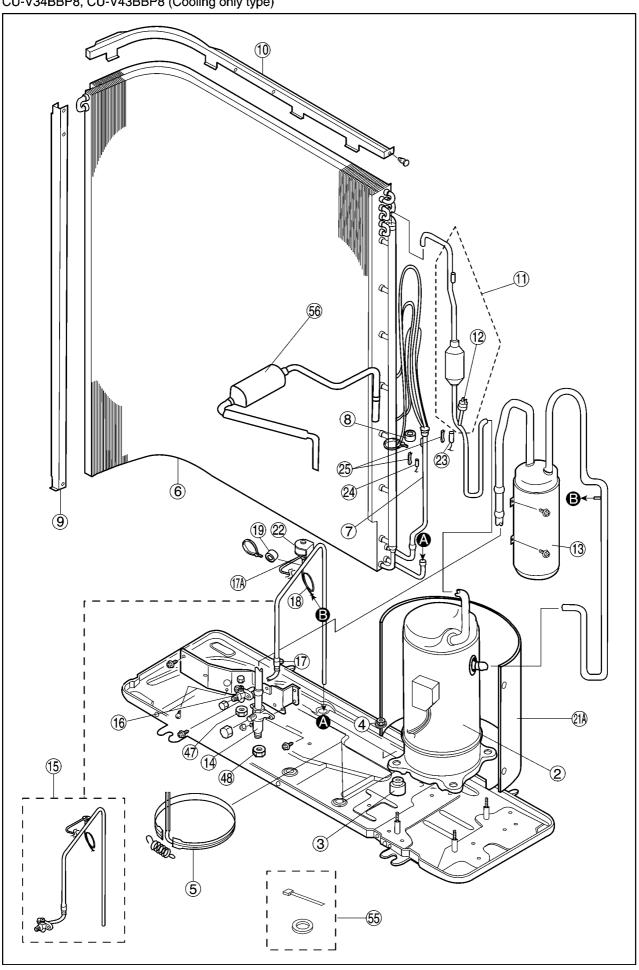
CU-W18BBP5, CU-W24BBP5, CU-W28BBP5, CU-W28BBP8 (Heat pump type)

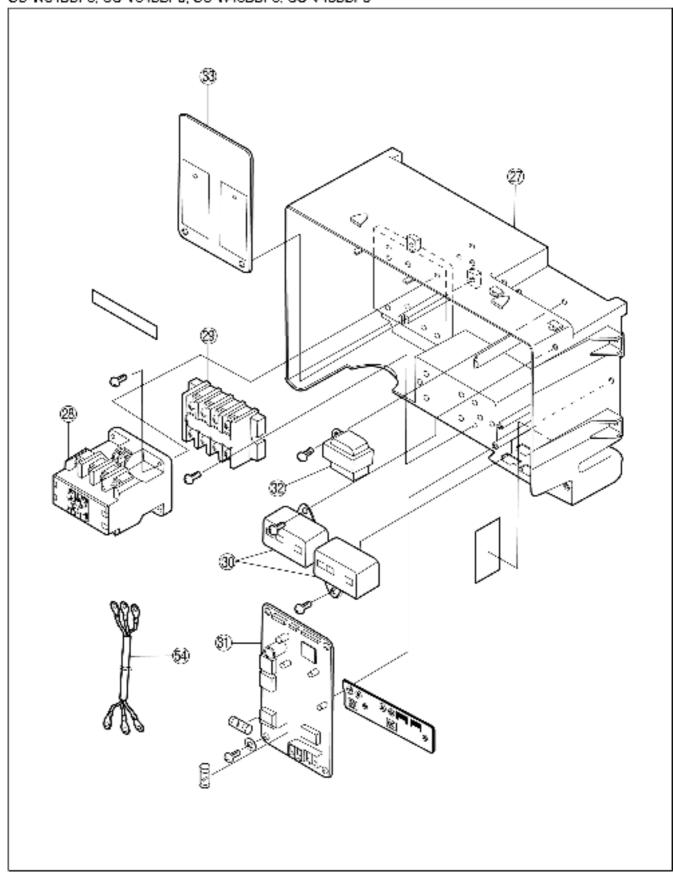
CU-V18BBP5, CU-V24BBP5, CU-V24BBP6, CU-V28BBP5, CU-V28BBP6 (Cooling only type)

CU-W18BBP5, CU-W24BBP5, CU-W28BBP5, CU-W28BBP8


	10001 0, 00 1124001 0, 00 1120001 0, 00 1		ı			
NO.	PART DESCRIPTION	QTY.	CU-W18BBP5	CU-W24BBP5	CU-W28BBP5	CU-W28BBP8
1	BASE PAN ASS'Y	1	CWD52K1050A	CWD52K1038A	←	←
2	COMPRESSOR	1	PE31VNEMT	NE41VNHMT	NE44VNHMT	NE44YDNMT
3	ANTI-VIBRATION BUSHING	4	CWH501018	←	←	←
4	NUT FOR COMP. MOUNT.	3	XNG8	←	←	←
4a	WASHER for COMPRESSOR	3	8AWX	←	←	←
4b	SP WASHER	3	CWH571018	←	←	←
5	CRANKCASE HEATER	1	CWA341006	CWA341005	←	←
6	CONDENSER COMPLETE	1	CWB32C1193	CWB32C1194	CWB32C1195	←
7	TUBE ASS'Y (CAPILLARY TUBE)	1	CWT07K1072	CWT07K1073	CWT07K1074	←
8	PIPE HOLDER RUBBER	1	CWG251016	←	←	←
9	CONDENSER SIDE PLATE	1	CWD911122	←	←	←
11	TUBE ASS'Y(PRESSURE SWITCH)	1	CWT022597	CWT022593	←	←
12	HIGH PRESSURE SWITCH	1	CWA101003	←	←	←
13	ACCUMULATOR	1	CWB131007A	<u>←</u>	CWB131008A	←
	4-WAYS VALVE COMPLETE	1	CWB00C1004	CWB00C1005	CWB00C1006	←
13b	TUBE ASS'Y(PRESS.SW + VALVE)	1	CWT022598	CWT022595	←	<u>`</u>
13c	HEATING PRESSURE SWITCH	1	CWA101004			←
	4-WAYS VALVE	1		←	←	+
			CWB00003	←	←	←
15	TUBE ASS'Y(VALVE+STRAINER)	1	CWT022626	CWT022627	CWT022628	←
16	3-WAYS VALVE	1	CWB011089	←	CWB011090	←
17	STRAINER	1	CWB111005	←	←	←
	2-WAYS VALVE	1	-	-	CWB02229	←
18	CAPILLARY TUBE for VALVE	1	CWB15K1041	CWB15K1065	CWB15K1037	←
19	PIPE HOLDER RUBBER	1	CWG251013	←	←	←
20	HOLDER-SERVICE VALVE	1	CWD911191	CWD911124	←	←
21	SOUND-PROOF BOARD ASS'Y	1	CWH151016	←	←	←
21a	SOUND PROOF MATERIAL-COMP	1	CWG302130	CWG302098	←	←
22	V-COIL COMPLETE	1	-	-	CWA43C2068	←
22a	V-COIL COMPLETE (4 WAY VALVE)	1	CWA43C2060	←	←	←
23	PIPING SENSOR (DISCHARGE)	1	CWA501042	←	←	←
24	PIPING SENSOR (COIL)	1	CWA501043	-	· ←	· ←
25	SPRING FOR SENSOR	2	CWH711010	<u>`</u>	· ←	· ←
26	CABINET REAR PLATE	1	CWE02C1005	<u>`</u>	<u>`</u>	←
27		1				
	CONTROL BOARD	-	CWH141004	←	←	← σ===00100F
28	COMPRESSOR RELAY	1	CWA001005	←	←	CWA001007
29	TERMINAL BOARD ASS'Y	1	CWA28K1027	←	←	CWA28K1029
30	CAPACITOR-FAN MOTOR	1	DS461255QP-A (2.5/460)	DS461305QP-A (3.0/460)	←	←
30a	CAPACITOR-COMPRESSOR	1	DS371456CPNA (45/370)	DS441456CPNB (45/440)	DS441506CPNB (50/440)	-
31	ELECTRONIC CONTROLLER	1	CWA742583	←	←	CWA742584
32	TRANSFORMER	1	CWA401029	←	←	←
33	CURRENT TRANSFORMER BOARD	1	CWA742592	←	CWA742591	CWA742592
33a	OVERLOAD PROTECTOR	1	-	-	_	CWA121075
33b	TERMINAL COVER	1	CWH171019	←	←	CWH171022
34	BRACKET FAN MOTOR	1	CWD541027	·	<u>`</u>	←
35	SCREW-BRACKET FAN MOTOR	4	CWH551040	<u>`</u>	<u>`</u>	←
36	FAN MOTOR	1	CWA951077	CWA951078	←	←
38	SCREW-FAN MOTOR	4	CWH55442		←	
39	PROPELLER FAN	1	CWH35442 CWH001007	←		←
		<u> </u>		←	←	←
40	WASHER for P.FAN	1	CWH571013	←	←	←
41	SPRING WASHER for P.FAN	1	XWB10B	←	←	←
42	NUT for PROPELLER FAN	1	CWH56033	←	←	←
43	P.FAN AIR GUIDER PLATE	1	CWE061036A	←	←	←
44	FAN GUARD	1	CWD041014A	←	←	←
45	CONDENSER GUARD	1	CWD041015A	←	←	←
46	CABINET TOP PLATE COMPLETE	1	CWE03C1004	←	←	←
47	FLARE NUT (1/4") / (3/8")	1	CWH6002140	←	CWT25005	←
48	FLARE NUT (5/8")	1	CWT25096	CWT25004	←	←
49	PIPE COVER (FRONT)	1	CWD601017A	←	←	←
50	PIPE COVER (BACK)	1	CWD601018A	←	←	←
51	CABINET FRONT PLATE	1	CWE06C1033	←	←	←
52	HANDLE	3	CWE161008	-	←	←
	HANDLE	1	CWE161009	<u>+</u>	· ←	· ←
5.3				· ` ` · · · · · · · · · · · · · · · · ·		
53 54		1	CWA67C3657	_	_	(WA67C3665
54	LEADWIRE-COMPRESSOR	1	CWA67C3657	←	←	CWA67C3665
	LEADWIRE-COMPRESSOR ACCESSORY COMPLETE	1	CWH82C1105	←	←	←
54 55	LEADWIRE-COMPRESSOR	 				†


All parts are supplied from MACC Malaysia (Vendor Code : 086)


CU-V18BBP5, CU-V24BBP5, CU-V24BBP8, CU-V28BBP5, CU-V28BBP8


NO.	PART DESCRIPTION	QTY.	CU-V18BBP5	CU-V24BBP5	CU-V24BBP8	CU-V28BBP5	CU-V28BBP8
	BASE PAN ASS'Y	1	CWD52K1050A	CWD52K1038A	÷	<u>←</u>	←
2	COMPRESSOR	1	PE31VNEMT	NE41VNHMT	NE41YDNMT	NE44VNHMT	NE44YDNMT
3	ANTI-VIBRATION BUSHING	4	CWH511040	CWH501018	←	←	←
4	NUT FOR COMP. MOUNT.	3	XNG8	<u>←</u>	· ←	<u>`</u>	· · ·
4a	WASHER for COMPRESSOR	3	8AWX	· · ·	· ←	<u>`</u>	· · ·
4b	SP WASHER	3	CWH571018	<u> </u>	<u>←</u>	<u> </u>	<u> </u>
5	CRANKCASE HEATER	1		•	<u>←</u>	←	<u></u>
			CWA341006	CWA341005	·	· · · · · · · · · · · · · · · · · · ·	
6 7	CONDENSER COMPLETE	1	CWB32C1188	CWB32C1189	←	CWB32C1190	←
	TUBE ASS'Y (CAPILLARY TUBE)		CWT07K1077	CWT07K1078	←	CWT07K1081	<u></u>
8	PIPE HOLDER RUBBER	1	CWG251016	←	←	←	←
9	CONDENSER SIDE PLATE	1	CWD911122	←	←	←	—
11	TUBE ASS'Y(PRESSURE SWITCH)	1	CWT022588	CWT022584	←	←	+
12	HIGH PRESSURE SWITCH	1	CWA101003	+	←	←	+
	ACCUMULATOR	1	CWB131007A	+	←	CWB131008A	+
14	TUBE ASS'Y(3 WAYS VALVE)	1	CWT022585		←	CWT022591	
15	TUBE ASS'Y(VALVE+STRAINER)	1	CWT022587	CWT022583	←	CWT022589	↓
16	3-WAYS VALVE	1	CWB011086	CWB011087	←	←	←
17	STRAINER	1	NOT AVAILABLE	+	←	←	←
17a	2-WAYS VALVE	1	-	-	-	CWB02299	←
18	CAPILLARY TUBE for VALVE	1	CWB15K1041	CWB15K1065	←	CWB15K1068	+
19	PIPE HOLDER RUBBER	1	CWG251013	+	NOT AVAILABLE	CWG251013	+
20	HOLDER-SERVICE VALVE	1	CWD911191	CWD911124	←	←	+
21	SOUND-PROOF BOARD ASS'Y	1	CWH151016	+	←	+	+
21a	SOUND PROOF MATERIAL-COMP	1	CWG302130	CWG302098	←	←	←
22	V-COIL COMPLETE	1	-	-	-	CWA43C2068	←
23	PIPING SENSOR (DISCHARGE)	1	CWA501042	←	←	←	←
24	PIPING SENSOR (COIL)	1	CWA501043	←	←	←	←
25	SPRING FOR SENSOR	2	CWH711010	←	←	←	←
26	CABINET REAR PLATE	1	CWE02C1005	←	<u>←</u>	<u>·</u>	<u>←</u>
27	CONTROL BOARD	1	CWH141004	· ←	<u>_</u>	·	· ·
28	COMPRESSOR RELAY	1	CWA001005	· · · · · ·	CWA001007	CWA001005	CWA001007
29	TERMINAL BOARD ASS'Y	1	CWA28K1027	<u>`</u>	CWA28K1029	CWA28K1027	CWA28K1029
30	CAPACITOR-FAN MOTOR (3/460)	1	DS461255QP-A (2.5/460)	DS461305QP-A (3/460)	← ←	← ←	←
30a	CAPACITOR-COMP (MF/V)	1	DS371456CPNA (45/370)	DS441456CPNB (45/440)	-	DS441506CPNB (50/440)	-
31	ELECTRONIC CONTROLLER	1			CWA742588	CWA742587	CWA742588
32	TRANSFORMER	1	CWA742587 CWA401029	<u></u> ←		CWA/42567 ←	CWA/42566 ←
33	CURRENT TRANSFORMER BOARD	1	CWA742592		←	CWA742591	CWA742592
33a	OVERLOAD PROTECTOR	1	CWA/42592	←	← CWA121075	CWA/42591	CWA121075
	**		- -			- -	
	TERMINAL COVER	1	CWH171019		CWH171022	CWH171019	CWH171022
	BRACKET FAN MOTOR	1	CWD541027	<u></u>	←	←	←
35	SCREW-BRACKET FAN MOTOR	4	CWH551040	←	←	←	+
36	FAN MOTOR	1	CWA951077	CWA951078	←	←	←
	SCREW-FAN MOTOR	4	CWH55442	←	←	←	←
	PROPELLER FAN	1	CWH001007	←	←	←	←
	WASHER for P.FAN	1	CWH571013	+	←	←	←
41	SPRING WASHER for P.FAN	1	XWB10B	+	←	+	+
42	NUT for PROPELLER FAN	1	CWH56033	↓	←	←	+
43	P.FAN AIR GUIDER PLATE	1	CWE061036A		←		
44	FAN GUARD	1	CWD041014A	+	←	↓	+
45	CONDENSER GUARD	1	CWD041015A	+	←	←	+
46	CABINET TOP PLATE COMPLETE	1	CWE03C1004	+	←	+	+
47	FLARE NUT (1/4") / (3/8")	1	CWH6002140	←	←	CWT25005	←
	FLARE NUT (5/8")	1	CWT25096	CWT25004	←	←	←
49	PIPE COVER (FRONT)	1	CWD601017A	←	←	←	-
	PIPE COVER (BACK)	1	CWD601018A	←	←	←	←
51	CABINET FRONT PLATE	1	CWE06C1033	· · · · · ·	· ←	· ·	· · ·
52	HANDLE	3	CWE161008	<u> </u>	-	<u> </u>	
53	HANDLE	1	CWE161008 CWE161009				<u>←</u>
				←	← (WA) 6703665	← ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	← ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
54	LEADWIRE-COMPRESSOR	1	CWA67C3657	←	CWA67C3665	CWA67C3657	CWA67C3665
	ACCESSORY COMPLETE	1	CWH82C1105	T	←	+	
55		_					
	INSTALLATION INSTRUCTION DRYER	1	CWF612270 CWB101013	↓	←	← CWB101014	←

All parts are supplied from MACC Malaysia (Vendor Code: 086)

CU-W34BBP8, CU-W43BBP8

NO.	PART DESCRIPTION	QTY.	CU-W34BBP8	CU-W43BBP8
1	BASE PAN ASS'Y	1	CWD52K1039A	CWD52K1040A
2	COMPRESSOR	1	ZR48KCE-TFD	ZR57KCE-TFD
3	ANTI-VIBRATION BUSHING	4	CWH501020	
4		3		<u>←</u>
-	NUT FOR COMP. MOUNT.	_	CWH4582065	← CTV2 241 002
5	CRANKCASE HEATER	1	CWA341004	CWA341002
6	CONDENSER COMPLETE	1	CWB32C1196	CWB32C1197
7	TUBE ASS'Y (CAPILLARY TUBE)	1	CWT07K1075	CWT07K1076
8	PIPE HOLDER RUBBER	1	CWG251016	CWG251021
9	CONDENSER SIDE PLATE	1	CWD911123	←
10	CONDENSER TOP PLATE	1	CWD911132	CWD911133
11	TUBE ASS'Y(PRESSURE SWITCH)	1	CWT022615	CWT022618
12	HIGH PRESSURE SWITCH	1	CWA101003	←
13	ACCUMULATOR	1	CWB13K1022	CWB13C1020
13b	TUBE ASS'Y(PRESS.SW + VALVE)	1	CWT022617	CWT022620
13c	HEATING PRESSURE SWITCH		CWA101004	←
13d	4-WAYS VALVE	1	CWB001014	CWB001015
15	TUBE ASS'Y(VALVE+STRAINER)	1	CWT022629	←
16	3-WAYS VALVE		CWB011091	←
17	STRAINER		CWB111005	←
17a	2-WAYS VALVE		CWB02299	←
18	CAPILLARY TUBE for VALVE	1	CWB15K1037	CWB15K1039
19	PIPE HOLDER RUBBER	1	CWG251015	←
20	HOLDER-SERVICE VALVE	1	CWD911131	←
21	SOUND-PROOF BOARD ASS'Y	1	CWH15K1010	←
21a	SOUND PROOF MATERIAL-COMP.	1	CWG302101	CWG302103
22	V-COIL COMPLETE	1	CWA43C2067	←
22a	V-COIL COMPLETE-4 WAY VALVE	1	CWA43C2063	· ←
23	PIPING SENSOR (DISCHARGE)	1	CWA501044	· ←
24	PIPING SENSOR (COIL)	1	CWA501045	<u>`</u>
25	SPRING FOR SENSOR	2	CWH711010	<u>←</u>
26				
	CABINET REAR PLATE	1	CWE021012A	CWE02C1010
27	CONTROL BOARD	1	CWH141004	←
28	COMPRESSOR RELAY	1	CWA001005	←
29	TERMINAL BOARD ASS'Y	1	CWA28K1029	←
30	CAPACITOR-FAN MOTOR	1	DS461305QP-A (3.0/460)	DS461355QP-A (3.5/460)
31	ELECTRONIC CONTROLLER		CWA742585	
		-		←
32	TRANSFORMER	1	CWA401029	←
33	CURRENT TRANSFORMER BOARD	1	CWA401029 CWA742592	← ←
33 34	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR	1 1 1	CWA401029 CWA742592 CWD541028	÷
33 34 35	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR	1 1 1 4	CWA401029 CWA742592 CWD541028 CWH551040	← ←
33 34 35 36	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR FAN MOTOR	1 1 1 4 2	CWA401029 CWA742592 CWD541028 CWH551040 CWA951078	← ← ← ←
33 34 35 36 38	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR FAN MOTOR SCREW-FAN MOTOR	1 1 1 4 2 8	CWA401029 CWA742592 CWD541028 CWH551040 CWA951078 CWH55442	← ← ←
33 34 35 36 38 39	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR FAN MOTOR SCREW-FAN MOTOR PROPELLER FAN	1 1 1 4 2 8 2	CWA401029 CWA742592 CWD541028 CWH551040 CWA951078 CWH55442 CWH001007	← ← ← ←
33 34 35 36 38	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR FAN MOTOR SCREW-FAN MOTOR	1 1 1 4 2 8	CWA401029 CWA742592 CWD541028 CWH551040 CWA951078 CWH55442	← ← ← ← ←
33 34 35 36 38 39 40 41	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR FAN MOTOR SCREW-FAN MOTOR PROPELLER FAN WASHER for P.FAN SPRING WASHER for P.FAN	1 1 1 4 2 8 2 2 2	CWA401029 CWA742592 CWD541028 CWH551040 CWA951078 CWH55442 CWH001007 CWH571013 XWB10B	← ← ← ← ← ←
33 34 35 36 38 39 40 41 42	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR FAN MOTOR SCREW-FAN MOTOR PROPELLER FAN WASHER for P.FAN SPRING WASHER for P.FAN NUT for PROPELLER FAN	1 1 1 4 2 8 2 2 2 2 2	CWA401029 CWA742592 CWD541028 CWH551040 CWA951078 CWH55442 CWH001007 CWH571013 XWB10B CWH56033	← ← ← ← ← ← ←
33 34 35 36 38 39 40 41	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR FAN MOTOR SCREW-FAN MOTOR PROPELLER FAN WASHER for P.FAN SPRING WASHER for P.FAN	1 1 1 4 2 8 2 2 2	CWA401029 CWA742592 CWD541028 CWH551040 CWA951078 CWH55442 CWH001007 CWH571013 XWB10B	← ← ← ← ← ←
33 34 35 36 38 39 40 41 42	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR FAN MOTOR SCREW-FAN MOTOR PROPELLER FAN WASHER for P.FAN SPRING WASHER for P.FAN NUT for PROPELLER FAN	1 1 1 4 2 8 2 2 2 2 2 2 1 2	CWA401029 CWA742592 CWD541028 CWH551040 CWA951078 CWH55442 CWH001007 CWH571013 XWB10B CWH56033	← ← ← ← ← ← ←
33 34 35 36 38 39 40 41 42 43	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR FAN MOTOR SCREW-FAN MOTOR PROPELLER FAN WASHER for P.FAN SPRING WASHER for P.FAN NUT for PROPELLER FAN P.FAN AIR GUIDER PLATE	1 1 1 4 2 8 2 2 2 2 2 2	CWA401029 CWA742592 CWD541028 CWH551040 CWA951078 CWH55442 CWH001007 CWH571013 XWB10B CWH56033 CWE061042A	← ← ← ← ← ← ← ← ← ← ← CWE061044A
33 34 35 36 38 39 40 41 42 43	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR FAN MOTOR SCREW-FAN MOTOR PROPELLER FAN WASHER for P.FAN SPRING WASHER for P.FAN NUT for PROPELLER FAN P.FAN AIR GUIDER PLATE FAN GUARD	1 1 1 4 2 8 2 2 2 2 2 2 1 2	CWA401029 CWA742592 CWD541028 CWH551040 CWA951078 CWH55442 CWH001007 CWH571013 XWB10B CWH56033 CWE061042A CWD041014A	← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← CWE061044A
33 34 35 36 38 39 40 41 42 43 44	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR FAN MOTOR SCREW-FAN MOTOR PROPELLER FAN WASHER for P.FAN SPRING WASHER for P.FAN NUT for PROPELLER FAN P.FAN AIR GUIDER PLATE FAN GUARD CONDENSER GUARD	1 1 1 4 2 8 2 2 2 2 2 2 1 2	CWA401029 CWA742592 CWD541028 CWH551040 CWA951078 CWH55442 CWH001007 CWH571013 XWB10B CWH56033 CWE061042A CWD041014A CWD041016A	← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
33 34 35 36 38 39 40 41 42 43 44 45	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR FAN MOTOR SCREW-FAN MOTOR PROPELLER FAN WASHER for P.FAN SPRING WASHER for P.FAN NUT for PROPELLER FAN P.FAN AIR GUIDER PLATE FAN GUARD CONDENSER GUARD CABINET TOP PLATE COMPLETE	1 1 1 4 2 8 2 2 2 2 2 2 1 2 1	CWA401029 CWA742592 CWD541028 CWH551040 CWA951078 CWH55442 CWH001007 CWH571013 XWB10B CWH56033 CWE061042A CWD041014A CWD041016A CWE03C1004	← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← CWE061044A ← CWD041017A CWE03C1005
33 34 35 36 38 39 40 41 42 43 44 45 46	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR FAN MOTOR SCREW-FAN MOTOR PROPELLER FAN WASHER for P.FAN SPRING WASHER for P.FAN NUT for PROPELLER FAN P.FAN AIR GUIDER PLATE FAN GUARD CONDENSER GUARD CABINET TOP PLATE COMPLETE FLARE NUT (3/8")	1 1 1 4 2 8 2 2 2 2 2 2 1 2 1 1	CWA401029 CWA742592 CWD541028 CWH551040 CWA951078 CWH55442 CWH001007 CWH571013 XWB10B CWH56033 CWE061042A CWD041014A CWD041016A CWE03C1004 CWT25005	← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
33 34 35 36 38 39 40 41 42 43 44 45 46 47	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR FAN MOTOR SCREW-FAN MOTOR PROPELLER FAN WASHER for P.FAN SPRING WASHER for P.FAN NUT for PROPELLER FAN P.FAN AIR GUIDER PLATE FAN GUARD CONDENSER GUARD CABINET TOP PLATE COMPLETE FLARE NUT (3/8") FLARE NUT (6/8")	1 1 1 4 2 8 2 2 2 2 2 1 2 1 1 1	CWA401029 CWA742592 CWD541028 CWH551040 CWA951078 CWH55442 CWH001007 CWH571013 XWB10B CWH56033 CWE061042A CWD041014A CWD041016A CWE03C1004 CWT25005 CWT251012	← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
33 34 35 36 38 39 40 41 42 43 44 45 46 47 48	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR FAN MOTOR SCREW-FAN MOTOR PROPELLER FAN WASHER for P.FAN SPRING WASHER for P.FAN NUT for PROPELLER FAN P.FAN AIR GUIDER PLATE FAN GUARD CONDENSER GUARD CABINET TOP PLATE COMPLETE FLARE NUT (3/8") FLARE NUT (6/8") PIPE COVER (FRONT)	1 1 1 4 2 8 2 2 2 2 2 1 2 1 1 1 1	CWA401029 CWA742592 CWD541028 CWH551040 CWA951078 CWH55442 CWH001007 CWH571013 XWB10B CWH56033 CWE061042A CWD041014A CWD041016A CWE03C1004 CWT25005 CWT251012 CWD601017A	← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
33 34 35 36 38 39 40 41 42 43 44 45 46 47 48 49 50	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR FAN MOTOR SCREW-FAN MOTOR PROPELLER FAN WASHER for P.FAN SPRING WASHER for P.FAN NUT for PROPELLER FAN P.FAN AIR GUIDER PLATE FAN GUARD CONDENSER GUARD CABINET TOP PLATE COMPLETE FLARE NUT (3/8") FLARE NUT (6/8") PIPE COVER (FRONT) PIPE COVER (BACK)	1 1 1 4 2 8 2 2 2 2 2 1 1 1 1 1 1	CWA401029 CWA742592 CWD541028 CWH551040 CWA951078 CWH55442 CWH001007 CWH571013 XWB10B CWH56033 CWE061042A CWD041014A CWD041016A CWE03C1004 CWT25005 CWT251012 CWD601017A CWD601018A	← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
33 34 35 36 38 39 40 41 42 43 44 45 46 47 48 49 50 51	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR FAN MOTOR SCREW-FAN MOTOR PROPELLER FAN WASHER for P.FAN SPRING WASHER for P.FAN NUT for PROPELLER FAN P.FAN AIR GUIDER PLATE FAN GUARD CONDENSER GUARD CABINET TOP PLATE COMPLETE FLARE NUT (3/8") FLARE NUT (6/8") PIPE COVER (FRONT) PIPE COVER (BACK) CABINET FRONT PLATE	1 1 1 4 2 8 8 2 2 2 2 1 2 1 1 1 1 1 1	CWA401029 CWA742592 CWD541028 CWH551040 CWA951078 CWH55442 CWH001007 CWH571013 XWB10B CWH56033 CWE061042A CWD041014A CWD041016A CWE03C1004 CWT25005 CWT251012 CWD601017A CWD601018A CWE061046A	← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
33 34 35 36 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR FAN MOTOR SCREW-FAN MOTOR PROPELLER FAN WASHER for P.FAN SPRING WASHER for P.FAN NUT for PROPELLER FAN P.FAN AIR GUIDER PLATE FAN GUARD CONDENSER GUARD CABINET TOP PLATE COMPLETE FLARE NUT (3/8") FLARE NUT (6/8") PIPE COVER (FRONT) PIPE COVER (BACK) CABINET FRONT PLATE HANDLE	1 1 1 4 2 8 8 2 2 2 2 1 1 1 1 1 1 1 1 1 3	CWA401029 CWA742592 CWD541028 CWH551040 CWA951078 CWH55442 CWH001007 CWH571013 XWB10B CWH56033 CWE061042A CWD041014A CWD041016A CWE03C1004 CWT25005 CWT251012 CWD601017A CWD601018A CWE061046A CWE061046A CWE061008	← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
33 34 35 36 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR FAN MOTOR SCREW-FAN MOTOR PROPELLER FAN WASHER for P.FAN SPRING WASHER for P.FAN NUT for PROPELLER FAN P.FAN AIR GUIDER PLATE FAN GUARD CONDENSER GUARD CABINET TOP PLATE COMPLETE FLARE NUT (3/8") FLARE NUT (6/8") PIPE COVER (FRONT) PIPE COVER (BACK) CABINET FRONT PLATE HANDLE	1 1 1 4 2 8 8 2 2 2 2 1 1 1 1 1 1 1 1 1 3 1	CWA401029 CWA742592 CWD541028 CWH551040 CWA951078 CWH55442 CWH001007 CWH571013 XWB10B CWH56033 CWE061042A CWD041014A CWD041016A CWE03C1004 CWT25005 CWT251012 CWD601017A CWD601018A CWE061046A CWE061046A CWE161008 CWE161009	← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
33 34 35 36 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR FAN MOTOR SCREW-FAN MOTOR PROPELLER FAN WASHER for P.FAN SPRING WASHER for P.FAN NUT for PROPELLER FAN P.FAN AIR GUIDER PLATE FAN GUARD CONDENSER GUARD CABINET TOP PLATE COMPLETE FLARE NUT (3/8") FLARE NUT (6/8") PIPE COVER (FRONT) PIPE COVER (BACK) CABINET FRONT PLATE HANDLE HANDLE LEADWIRE-COMPRESSOR	1 1 1 4 2 8 8 2 2 2 2 1 1 1 1 1 1 1 1 1 1	CWA401029 CWA742592 CWD541028 CWH551040 CWA951078 CWH55442 CWH001007 CWH571013 XWB10B CWH56033 CWE061042A CWD041014A CWD041016A CWE03C1004 CWT25005 CWT251012 CWD601017A CWD601018A CWE061046A CWE061046A CWE061008 CWE161009 CWA67C3656	← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← CWE061044A ← CWD041017A CWE03C1005 ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
33 34 35 36 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	CURRENT TRANSFORMER BOARD BRACKET-FAN MOTOR SCREW-BRACKET FAN MOTOR FAN MOTOR SCREW-FAN MOTOR PROPELLER FAN WASHER for P.FAN SPRING WASHER for P.FAN NUT for PROPELLER FAN P.FAN AIR GUIDER PLATE FAN GUARD CONDENSER GUARD CABINET TOP PLATE COMPLETE FLARE NUT (3/8") FLARE NUT (6/8") PIPE COVER (FRONT) PIPE COVER (BACK) CABINET FRONT PLATE HANDLE HANDLE LEADWIRE-COMPRESSOR ACCESSORY COMPLETE	1 1 1 4 2 8 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1	CWA401029 CWA742592 CWD541028 CWH551040 CWA951078 CWH55442 CWH001007 CWH571013 XWB10B CWH56033 CWE061042A CWD041016A CWE03C1004 CWT25005 CWT251012 CWD601017A CWD601018A CWE061046A CWE161008 CWE161009 CWA67C3656 CWH82C1105	← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←

The above parts are kept for seven years in accordance with MEI service policy.

CU-V34BBP8, CU-V43BBP8

NO.	PART DESCRIPTION	QTY.	CU-V34BBP8	CU-V43BBP8
1	BASE PAN ASS'Y	1	CWD52K1039A	CWD52K1040A
2	COMPRESSOR	1	ZR48KCE-TFD	ZR57KCE-TFD
3	ANTI-VIBRATION BUSHING	4	CWH501020	←
4	NUT FOR COMP. MOUNT.	3	CWH4582065	←
5	CRANKCASE HEATER	1	CWA341004	CWA341002
6	CONDENSER COMPLETE	1	CWB32C1191	CWB32C1192
7	TUBE ASS'Y(CAPILLARY TUBE)	1	CWT07K1079	CWT07K1080
8	PIPE HOLDER RUBBER	1	CWG251016	CWG251021
8	PIPE HOLDER RUBBER	1	CWG251015	←
9	CONDENSER SIDE PLATE	1	CWD911123	←
10	CONDENSER TOP PLATE	1	CWD911132	CWD911133
11	TUBE ASS'Y(PRESSURE SW+RCVR)	1	CWT022607	CWT022611
12	HIGH PRESSURE SWITCH	1	CWA101003	←
	ACCUMULATOR	1	CWB131014A	CWB131015A
14	TUBE ASS'Y(3 WAY VALVE-GAS)	1	CWT022606	←
15	TUBE ASS'Y(VALVE+STRAINER)	1	CWT022609	<u>←</u>
16	3-WAYS VALVE	1	CWB011091	· ←
17	STRAINER	1	CWB111010	· ←
17a	2-WAYS VALVE	1	CWB02299	<u>`</u>
18	CAPILLARY TUBE for VALVE	1	CWB15K1037	CWB15K1039
	PIPE HOLDER RUBBER	1	CWG251015	←
21	SOUND-PROOF BOARD ASS'Y	1	CWH15K1010	· ←
21a	SOUND PROOF MATERIAL-COMP.	1	CWG302101	CWG302103
	V-COIL COMPLETE	1	CWA43C2067	←
	PIPING SENSOR (DISCHARGE)	1	CWA501044	<u>`</u>
24	PIPING SENSOR (COIL)	1	CWA501044 CWA501045	<u>←</u>
25	SPRING FOR SENSOR	2	CWH711010	←
26	CABINET REAR PLATE	1	CWE021012A	CWE02C1009
27	CONTROL BOARD	1	CWH141004	
28	COMPRESSOR RELAY	1	CWA001005	-
29	TERMINAL BOARD ASS'Y	1	CWA28K1029	← ←
30	CAPACITOR-FAN MOTOR	2	DS461305QP-A (3.0/460)	DS461355QP-A (3.5/460)
	ELECTRONIC CONTROLLER	1	CWA742586	
32	TRANSFORMER	1	CWA401029	← ←
33	CURRENT TRANSFORMER BOARD	1	CWA742592	←
	BRACKET FAN MOTOR	1	CWD541028	<u>←</u>
35	SCREW-BRACKET FAN MOTOR	4	CWH551040	
	FAN MOTOR	2	CWA951078	←
38	SCREW-FAN MOTOR	8	CWH55442	←
39	PROPELLER FAN	2	CWH001007	
	WASHER for P.FAN	2	CWH571013	←
41	SPRING WASHER for P.FAN	2	XWB10B	←
	NUT for PROPELLER FAN	2	XWB10B CWH56033	
		1	CWH56033 CWE061042A	← CWE061044A
	P.FAN AIR GUIDER PLATE	2		
44	FAN GUARD	1	CWD041014A	← CWD0410173
	CONDENSER GUARD	1	CWD041016A	CWD041017A
46	CABINET TOP PLATE COMPLETE		CWE03C1004	CWE03C1005
	FLARE NUT (3/8")	1	CWT25005	<u>←</u>
48	FLARE NUT (6/8")	1	CWT251012	←
49	PIPE COVER (FRONT)	1	CWD601017A	-
	PIPE COVER (BACK)	1	CWD601018A	←
51	CABINET FRONT PLATE	1	CWE061046A	←
52	HANDLE	3	CWE161008	←
	HANDLE TEADWIDE COMPRESSOR	1	CWE161009	<u>←</u>
54	LEADWIRE-COMPRESSOR	1	CWA67C3656	<u>←</u>
55	ACCESSORY COMPLETE	1	CWH82C1105	<u>←</u>
	INSTALLATION INSTRUCTION DRYER	1	CWF612270	<u>←</u>
56			CWB101014	⊢

All parts are supplied from MACC Malaysia (Vendor Code: 086)